用户名: 密码: 验证码:
Ce_(0.8)Sm_(0.2)O_(1.9)@TiO_2异质结构电解质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Ce_(0.8)Sm_(0.2)O_(1.9)@TiO_2 Heterostructure Electrolyte
  • 作者:童雨竹 ; 刘清 ; 陈硕 ; 周翔 ; 朱斌 ; 董文静
  • 英文作者:TONG Yuzhu;LIU Qing;CHEN Shuo;ZHOU Xiang;ZHU Bin;DONG Wenjing;Faculty of Physics and Electronic Science, Hubei University;
  • 关键词:固体氧化物燃料电池 ; Ce0.8Sm0.2O1.9 ; 异质结构 ; 两相界面
  • 英文关键词:solid oxide fuel cell;;Ce0.8Sm0.2O1.9;;heterostructure;;two-phase interface
  • 中文刊名:SHHA
  • 英文刊名:Nonferrous Metal Materials and Engineering
  • 机构:湖北大学物理与电子科学学院;
  • 出版日期:2019-06-15
  • 出版单位:有色金属材料与工程
  • 年:2019
  • 期:v.40;No.192
  • 基金:国家自然科学基金资助项目(11604088)
  • 语种:中文;
  • 页:SHHA201903004
  • 页数:6
  • CN:03
  • ISSN:31-2125/TF
  • 分类号:25-30
摘要
半导体与离子导体形成的异质结构可以极大地增强材料的离子电导率,其两相界面能为离子传输提供较好的通道。以TiO_2与Ce0.8Sm0.2O1.9 (samarium doped ceria, SDC)为研究对象,分别通过湿化学法和干混法构造了两种不同的异质结构复合材料。研究表明,利用湿化学法制备的SDC@TiO_2异质结构复合材料(简称SDC@TiO_2)作电解质的燃料电池在550℃下最大输出功率密度为761 mW·cm-2,比用干混法制备的SDC-TiO_2异质结构复合材料(简称SDC-TiO_2)作电解质的燃料电池的最大输出功率密度高21%。与SDC-TiO_2相比,SDC@TiO_2具有更丰富的两相界面。电化学阻抗谱显示,以SDC@TiO_2材料作为电解质的电池具有更低的欧姆电阻和极化电阻。
        Heterostructure composed of semiconductor and ionic conductor can greatly enhance the ionic conductivity of material, in which two-phase interfaces can provide good channel for ion transportation.Taking TiO_2 and Ce0.8 Sm0.2 O1.9(samarium doped ceria, SDC) as the research objects, two kinds of heterostructure composites were constructed by wet chemical method and dry mixing method,respectively. The study indicates that the maximum output power density of fuel cell using wetchemical-method-prepared SDC@TiO_2 heterostructure composite(abbreviated as SDC@TiO_2) as electrolyte is 761 mW·cm-2 at 550 °C, which is 21% higher than that of fuel cell using dry-mixingmethod-prepared SDC-TiO_2 heterostructure composite(abbreviated as SDC-TiO_2) as electrolyte.Compared with SDC-TiO_2, the SDC@TiO_2 has more abundant two-phase interfaces. The electrochemical impedance spectrum shows that the cell using the SDC@TiO_2 material as electrolyte has lower ohmic resistance and polarization resistance.
引文
[1]WACHSMAN E D,LEE K T.Lowering the temperature of solid oxide fuel cells[J].Science,2011,334(6058):935-939.
    [2]刘雪琪,董文静,黄超,等.基于混合导电功能层的燃料电池研究[J].有色金属材料与工程,2017,38(1):1-5.
    [3]ZHANG T,MA J,KONG L,et al.Aging behavior and ionic conductivity of ceria-based ceramics:a comparative study[J].Solid State Ionics,2004,170(3/4):209-217.
    [4]ARUNKUMAR P,MEENA M,BABU K S.A review on cerium oxide-based electrolytes for ITSOFC[J].Nanomaterials and Energy,2012,1(5):288-305.
    [5]WANG X,MA Y,RAZA R,et al.Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs[J].Electrochemistry Communications,2008,10(10):1617-1620.
    [6]KIM H N,PARK H J,CHOI G M.The effect of alumina addition on the electrical conductivity of Gd-doped ceria[J].Journal of Electroceramics,2006,17(2/4):6.
    [7]LAN R,TAO S.High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions[J].Chemistry,2015,21(3):1350-1358.
    [8]HUI S,ROLLER J,YICK S,et al.A brief review of the ionic conductivity enhancement for selected oxide electrolytes[J].Journal of Power Sources,2007,172(2):493-502.
    [9]MAIER J.Ionic transport in nano-sized systems[J].Solid State Ionics,2004,175(1/4):7-12.
    [10]TULLER H L.Ionic conduction in nanocrystalline materials[J].Solid State Ionics,2000,131(175):143-157.
    [11]SATA N,EBERMAN K,EBERL K,et al.Mesoscopic fast ion conduction in nanometre-scale planar heterostructures[J].Nature,2000,408(6815):946.
    [12]GARCIA-BARRIOCANAL J,RIVERA-CALZADA A,VARELA M,et al.Colossal ionic conductivity at interfaces of epitaxial ZrO2∶Y2O3/SrTiO3heterostructures[J].Science,2008,321(5889):676-680.
    [13]LEE S,ZHANG W,KHATKHATAY F,et al.Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2nanocomposite films[J].Nano Lett,2015,15(11):7362-7396.
    [14]FAN L,ZHANG H,CHEN M,et al.Electrochemicalstudy of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells[J].International Journal of Hydrogen Energy,2013,38(26):11398-11405.
    [15]HU H,LIN Q,MUHAMMAD A,et al.Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell[J].Journal of Power Sources,2015,286:388-393.
    [16]HU H,LIN Q,ZHU Z,et al.Effects of composition on the electrochemical property and cell performance of single layer fuel cell[J].Journal of Power Sources,2015,275:476-482.
    [17]XIA F,LIU J,GU D,et al.Microwave absorption enhancement and electron microscopy characterization of BaTiO(3)nano-torus[J].Nanoscale,2011,3(9):3860-3867.
    [18]SUN W,SHI Z,QIAN J,et al.In-situ formed Ce0.8Sm0.2O2-δ@Ba(Ce,Zr)1-x(Sm,Y)x O3-δcore shell electron-blocking layer towards Ce0.8Sm0.2O2-δ-based solid oxide fuel cells with high open circuit voltages[J].Nano Energy,2014,8:305-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700