用户名: 密码: 验证码:
低温等离子体技术去除船舶尾气脱硫洗涤水处理中萘的动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Kinetic Study of Naphthalene Degradation from Ship's Emission Desulfurization Wash Water by Non-thermal Plasma Technology
  • 作者:张拿慧 ; 胡巍 ; 朱荧 ; 凌云 ; 彭自然
  • 英文作者:ZHANG Nahui;HU Wei;ZHU Ying;LING Yun;PENG Ziran;College of Marine Ecology and Environment,Shanghai Ocean University;Shanghai Marine Equipment Research Institute;
  • 关键词:低温等离子体 ; 脱硫洗涤水 ; 多环芳烃 ; ; 湿法脱硫
  • 英文关键词:non-thermal plasma;;desulfurization wash water;;polycyclic aromatic hydrocarbons (PAHs);;naphthalene;;wet desulfurization
  • 中文刊名:CANB
  • 英文刊名:Ship Engineering
  • 机构:上海海洋大学海洋生态与环境学院;上海船舶设备研究所;
  • 出版日期:2019-01-25
  • 出版单位:船舶工程
  • 年:2019
  • 期:v.41;No.263
  • 基金:工业和信息化部高技术船舶科研计划(工信部联装函[2017]21号)
  • 语种:中文;
  • 页:CANB201901021
  • 页数:4
  • CN:01
  • ISSN:31-1281/U
  • 分类号:105-108
摘要
以萘为多环芳烃代表物,采用低温等离子体技术对船舶尾气脱硫后的洗涤水进行处理,研究该过程中萘降解的反应动力学参数,考察臭氧剂量、萘初始浓度、温度和pH值对萘降解动力学的影响。结果表明,低温等离子体技术产生的臭氧降解萘符合假一级反应动力学,反应速率常数随着臭氧剂量、萘初始浓度和pH值的增加而增加,随着温度升高呈现先增加后降低的趋势。
        Taking naphthalene on behalf of polycyclic aromatic hydrocarbons, the desulfurization wash water from ship's exhaust emission is treated by non-thermal plasma technology to study the reaction kinetic parameters during naphthalene degradation. The influence of ozone dosage, naphthalene initial concentration,temperature and pH values on naphthalene degradation kinetics is investigated. The results indicate that the degradation of naphthalene by ozone produced from non-thermal plasma conforms to pseudo-first-order kinetics.Pseudo-first-order rate constants(k) increases with the increasing of ozone dosage, naphthalene initial concentration and pH value, while k increases and then decreases with the increasing of temperature.
引文
[1]VERONIKA E,IVAR I,TERJE B,et al.Transport Impacts on Atmosphere and Climate:Shipping[J].Atmospheric Environment,2010,44(37):4735-4771.
    [2]SVINDLAND M.The Environmental Effects of Emission Control Area Regulations on Short Sea Shipping in Northern Europe:The Case of Container Feeder Vessels[J].Transportation Research Part D:Transport and Environment,2016,61:423-430.
    [3]刘学.钠碱法船舶尾气处理技术及试验[D].哈尔滨:哈尔滨工程大学,2016.
    [4]CAIAZZO G,LANGELLA G,MICCIO F,et al.Seawater Sox Scrubbing in a Spray Tower for Marine Application[C]//Meeting of the Italian Section of the Combustion.2012.
    [5]Lloyd’s Register.Understanding Exhaust Gas Treatment Systems-Guidance for Shipowners and Operators[S/OL].https://www.alfalaval.com/globalassets/documents/m icrosites/puresox/understanding_exhaust_gas_treatm ent_systems.pdf.
    [6]朱益民,唐晓隹,郝阳,等.镁基-海水法船用脱硫系统:CN 2011200405654[P].2011-02-17.
    [7]李小琳.烟气脱硫废液的成分解析及其净化技术[D].辽宁大连:大连海事大学,2014.
    [8]邹隽珺.尿素选择性还原柴油机尾气NOX研究[J].节能交通与环保,2006(3):21-23.
    [9]中国船级社.船舶尾气清洗系统试验和检验指南[M].北京:人民交通出版社,2011.
    [10]刘浩,邓慧萍,刘铮.臭氧多相催化氧化技术处理水中多环芳烃的进展[J].水处理技术,2010,36(8):1-5.
    [11]汤敏,欧阳平.水中多环芳烃(PAHs)的去除技术研究进展[J].应用化工,2016,45(5):962-966.
    [12]王奕文.低温等离子体降解污染土壤热脱附尾气中典型有机污染物的研究[D].北京:中国环境科学研究院,2017.
    [13]牟睿文.介质阻挡放电与脉冲电晕放电等离子体修复多环芳烃污染土壤的研究[D].上海:东华大学,2016.
    [14]Office of Wastewater Management,Washington,D C.USEPA Method 330.5.Chlorine,Total Residual(Spectrophotometric,DPD)[S].1978.
    [15]中华人民共和国环境保护部.水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法:HJ 478-2009[S].2009.
    [16]GUROL M D,SINGER P C.Kinetics of Ozone Decomposition:A Dynamic Approach[J].Environmental Science and Technology,1982,16(7):377-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700