用户名: 密码: 验证码:
西藏拉萨地块盐湖石英闪长岩成因:锆石SHRIMP U-Pb年代学、地球化学及Sr-Nd-Pb-Hf同位素的制约
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogenesis of the quartz diorite in the Yanhu area of Lhasa terrance,Tibet:constraints from zircon SHRIMP U-Pb geochronology,geochemistry and Sr-Nd-Pb-Hf isotopes
  • 作者:彭勃 ; 李宝龙 ; 秦广洲 ; 周磊 ; 李宇飞
  • 英文作者:PENG Bo;LI Baolong;QIN Guangzhou;ZHOU Lei;LI Yufei;MNR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Science;College of Earth Sciences,Chengdu University of Technology;Geochemistry Exploration Brigade of Sichuan Bureau of Exploration and Development of Geology and Minerals Resources;The Inner Mongolia Geological Survey Institute of China Metallurgical Geology Bureau;
  • 关键词:藏北 ; 班公湖-怒江特提斯洋 ; 拉萨地块 ; 盐湖复式岩体 ; SHRIMP ; U-Pb年代学 ; Sr-Nd-Pb-Hf同位素
  • 英文关键词:North Tibet;;Bangong-Nujiang Tethyan ocean;;Lhasa terrance;;Yanhu composite body;;SHRIMP U-Pb geochronology;;Sr-Nd-Pb-Hf isotopes
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;成都理工大学地球科学学院;四川省地质矿产勘查开发局化探队;中国冶金地质总局内蒙古地质勘查院;
  • 出版日期:2019-03-15
  • 出版单位:地质学报
  • 年:2019
  • 期:v.93
  • 基金:国家自然科学基金项目(编号41802103);; 中国博士后科学基金(编号2018M641434);; 中国地质调查局项目(编号DD20160026)联合资助成果
  • 语种:中文;
  • 页:DZXE201903007
  • 页数:16
  • CN:03
  • ISSN:11-1951/P
  • 分类号:100-115
摘要
西藏阿里盐湖地区发育不同类型的火成岩,通常被认为形成于班公湖-怒江特提斯洋南向俯冲板片发生断离的构造背景。本文报道了盐湖石英闪长岩的锆石SHRIMP U-Pb年龄,全岩地球化学以及Sr-Nd-Pb-Hf同位素数据。盐湖石英闪长岩的锆石~(206)Pb/~(238)U加权平均年龄为118.5±1.9Ma,属早白垩世晚期。石英闪长岩样品主量元素表现为富钠的钙碱性岩石系列,A/CNK值介于0.84~0.89之间,属准铝质。微量元素富集Rb、K、Th、U等大离子亲石元素(LILE)和轻稀土元素(LREE),强烈亏损Nb、Ta、Zr、Hf、P、Ti等高场强元素(HFSE)和重稀土元素(HREE),无明显的Eu异常(δEu=0.81~0.98),无白云母和碱性暗色矿物,属准铝质未分异的I型花岗岩。盐湖石英闪长岩的(~(87)Sr/~(86)Sr)_i值为0.7045~0.7048,ε_(Nd)(t)值介于+0.5~+2.1之间,ε_(Hf)(t)值介于+7.9~+13之间,Hf同位素模式年龄t_(DM2)变化于283~674Ma之间。基于同位素以及岩石地球化学数据,表明盐湖石英闪长岩很可能是具亏损地幔印记的新生下地壳在角闪岩相发生部分熔融作用形成的。结合本文以及区域上的研究资料,盐湖石英闪长岩的形成时代和岩石地球化学特征与盐湖复式岩体中的花岗岩存在较大差异,具较低的锆石饱和温度(596~614℃),表明该岩体的形成尚未受到幔源物质上涌带来的热作用影响,很可能形成于板片断离前,班公湖-怒江特提斯洋持续南向俯冲的板片发生折返,俯冲角度变陡的深俯冲背景。
        The compositional diversity of rock types in the Yanhu area is usually considered as the tectonic setting that southward subduction of the Bangong-Nujiang Tethyan Ocean lithosphere broken off. In this paper, we report for the first time the zircon SHRIMP U-Pb age and Hf isotopic composition data, whole-rock major and trace element composition data, and Sr-Nd-Pb-Hf isotopic data from Yanhu quartz diorite. SHRIMP U-Pb dating yields a weighted mean of 118.5±1.9 Ma,indicating that Yanhu quartz diorite belongs to late Early Cretaceous. Geochemically, the quartz diorite from Yanhu belongs to Na-rich calc-alkali series, A/CNK=0.84~0.89 and are metaluminous. The quartz diorite enriched in Rb、K、Th、U and light rare earth elements(LREEs), relatively depleted in Nb、Ta、Zr、Hf、P、Ti and heavy rare earth elements(HREEs), without Eu anomalies(δEu=0.81~0.98). No alkaline mafic minerals and muscovite were observed duringoptical microscopy. All these features above suggest that quartz diorite belongs to metaluminous unfractionated I-type granite. The quartz diorite yielded whole-rock ε_(Nd)(t) of +0.5~+2.1 and(~(87)Sr/~(86)Sr)_i 0.7045~0.7048, the zircons ε_(Hf)(t) values are +7.9~+13, and the model ages(t_(DM2)) range 283 Ma to 674 Ma. Based on integrated isotopic and geochemical data, we infer that the quartz diorite formed by the partial melting of juvenile lower crustal material derived from depleted mantle under amphibolite facies. Based on the above data, combined with the regional geological background, we conclude that the quartz diorite are differernt from granites in Yanhu composite body in age and geochemical characteristics, have relative low zircon saturated temperature(596~614℃), suggesting mantle-derived materials had not involved in the petrogenesis of the Yanhu quartz diorite, the parent magma may formed before the slab broke off, sustainable subducted slab of Bangong-Nujiang Tethyan ocean had returned and the subduction angle becomes steep, enter geodynamic movement of deep subduction.
引文
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323~333.
    Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32: 365~401.
    Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200: 155~170.
    Blichert T J, Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243~258.
    Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry, 63~114.
    Chang Qingsong, Zhu Dingcheng, Zhao Zhidan, Dong Guochen, Mo xuanxue, Liu Yongsheng, Hu Zhaochu, 2011. Zircon U-Pb geochronology and Hf isotopes of the Early Cretaceous Rena-Co rhyolites from southern margin of Qiangtang, Tibet, and their implications. Acta Petrologica Sinica, 27: 2034~2044(in Chinese with English abstract).
    Chappell B W, White A J R. 1974. Twocontrasting granite types. Pacific Geology, 8: 173~174.
    Chen Y, Zhu D C, Zhao Z D, Meng F Y, Wang Q, Santosh M, Wang L Q, Dong G C, Mo X X. 2014. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449~463.
    Clemens J D. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Science Reviews, 61(1-2):1~18.
    Corfu F, Stott G M. 1993. Age and petrogenesis of two Late Archean magmatic suites, northwestern superior province, Canada: Zircon U-Pb and Lu-Hf isotopic relation. Journal of Petrology, 34: 817~838.
    Doe B R, Zartman R E. 1979. Plumbotectonics, the phanerozoic. Geochemistry ofHydrothermal Ore Deposits, 2: 22~70.
    Griffin W L, Pearson N J, Belousova E, Jackson S E, Achterbergh E V, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133~147.
    Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth & Planetary Science Letters, 90(3): 273~296.
    Hou Kejun, Li Yanhe, Zhou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595~2604(in Chinese with English abstract).
    Hsü K J, Guitang P, Seng?r A M C. 1995. Tectonic evolution of theTibetan plateau: a working hypothesis based on the archipelago model of orogenesis. International Geology Review, 37: 473~508.
    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489~508.
    Irvine T H, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8:523~548.
    Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H, Wang Y X. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos, 59(4):171~198.
    Jiang Y H, Jiang S Y, Liang H F, Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogr-anite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters, 241:617~663.
    Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, Southern Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos, 75:359~371.
    Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315: 980~983.
    King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. J. Petrol., 38: 371~391.
    Li J X, Qin K Z, Li G M, Richards J P, Zhao J X, Cao M J. 2014. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: petrogenetic and tectonic implications. Lithos, 198~199(1): 77~91.
    Li S M, Zhu D C, Wang Q, Zhao Z D, Sui Q L, Liu S A, Liu D, Mo X X. 2014. Northward subduction of Bangong-Nujiang Tethys: insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284~297.
    Li S M, Zhu D C, Wang Q, Zhao Z D, Zhang L L, Liu S A, Chang Q S, Lu Y H, Dai J C, Zheng Y C. 2016. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156±2 Ma from the north of Gerze, central Tibet: Records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic. Lithos, 262: 456~469.
    Lin Bin, Chen Yuchuan, Tang Juxing, Song Yang, Wang Qin, Feng Jun, Li Yanbo, Tang Xiaoqian, Lin Xin, Liu Zhibo, Wang Yiyun, Fang Xiang, Yang Chao, Yang Huanhuan, Fei Fan, Li Li, Gao Ke. 2016. Zircon U-Pb Ages and Hf isotopic composition of the ore-bearing porphyry in Dibao Cu (Au) deposit, Duolong ore concentration area, Xizang (Tibet), and its geological significance. Geological Review, 62(6):1565~1578 (in Chinese with English abstract).
    Lin Bin, ChenYuchuan, Tang Juxing, Song Yang, Wang Qin, Fang Xiang, Liu Zhibo, Wang Yiyun, Feng Jun, Li Yanbo, Yang Huanhuan, Chen Lie, Fu Yangang. 2017. Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry in the Dongwodong copper polymetallic deposit, North Tibet and their implications for exploration direction. Acta Geologica Sinca, 91(9):1942~1958 (in Chinese with English abstract).
    Ludwig K R. 2003. Isoplot 310-A geochronological toolkit for Microsoft Excel. U. S. Berkeley Geochronology Center Special Publication, 4: 1~70.
    Maniar M L, Kalonia D S, Simonelli A P. 1989. Use of liquid chromatography and mass spectroscopy to select an oligomer representative of polyester hydrolysis pathways. Journal of Pharmaceutical Sciences, 78(10): 858~862.
    Menzies M A. 1990. Archaean, Proterozoic, Phanerzoiclithospheres. In: Menzies M A, ed. Continental Mantle. New York: Oxford Science Publications, 67~86.
    Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers (China University of Geosciences, Beijing), 10(3):135~148 (in Chinese with English abstract).
    Pan Guitang,Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Ruquan, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22(03): 521~533 (in Chinese with English abstract).
    Pearce J A. 1984. Trace Element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.
    Peccerillo A, Taylor S R. 1976. Geochemistry ofEocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy & Petrology, 58(1): 63~81.
    Peter D K, Roland M. 2003. Lu-Hf and Sm-Nd isotope systems inzircon. Reviews in Mineralogy and Geochemistry, 53(1): 327~341.
    Petford N, Gallagher K. 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth & Planetary Science Letters, 193(3):483~499.
    Qu X M, Wang R J, Xin H B, Jiang Y H, Chen H. 2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos, 146~147(8): 264~275.
    Qu Xiaoming, Xin Hongbo, Du Dedao, Chen Hua. 2013. Magma source of the A-type granite and slab break-off in the midddle segment of the Bangonghu-Nujiang suture, Tibet plateau.Acta Geologica Sinica, 87(6):759~772 (in Chinese with English abstract).
    Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust-mantle recycling.Journal of Petrology, 36: 891~931.
    Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction betweens lab derived melts and peridotite in the mantle wedge: Experimental constramts at 3.8 GPa. Chemical Geology, 160: 335~356.
    Rushmer T. 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy & Petrology, 107(1):41~59.
    Salters V T M, Hart S R. 1991. The mantle sourceocean ridges, island, arcs: The Hf-isotope connection. Earth and Planetary Science Letters, 104: 364~380.
    Saunders A D, Norry M J, Tarney J. 1988. Origin of MORB andchemically-depleted mantle reservoirs: Trace element constraints. Journal of Petrology, Special_Volume (1): 415~445.
    Song Biao, Zhang Yuhai, Wan Yusheng. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26~30 (in Chinese with English abstract).
    Sui Q L, Wang Q, Zhu D C, Zhao Z D, Chen Y, Santosh, M., Hu Z C, Yuan H L, Mo X X, 2013. Compositional diversity of ca.110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168~169(3):144~159.
    Sui Qinglin. 2014. Chronology,petrogenesis, and tectonic implication of magmatic rocks from Yanhu in northern Lhasa Terrane, Tibet. Dissertation for master degree of China University of Geosciences (Beijing), 1~99 (in Chinese with English abstract).
    Sun Deyou, Wu Fuyuan, Zhang Yanbin, Gao Shan. 2004. The final closing time of West Lumulun River-Changchun-Yanji plate suture zone. Journal of Jilin University (Earth Science Edition), (02): 174~181 (in Chinese with English abstract).
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunder A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 2: 313~345.
    Tang Juxing, Zhang Zhi, Li Zhijun, Sun Yan, Yao Xiaofeng, Hu Zhenghua, Wang Hongxing, Song Junlong, He Lin. 2013. The metallogenis, deposit model and prospecting direction of the Ga’erqiong-Galale copper-gold ore field, Tibet. Acta Geoscientica Sinica, 34(04):385~394 (in Chinese with English abstract).
    Tang Juxing, Sun Xingguo, Ding Shuai, Wang Qin, Wang Yiyun, Yang Chao, Chen Hongqi, Li Yanbo, Li Yubin, Wei Lujie, Zhang Zhi, Song Junlong, Yang Huanhuan, Duan Jilin, Gao Ke, Fang Xiang, Tan Jiangyun. 2014. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(01):6~10 (in Chinese with English abstract).
    Tang Juxing, Song Yang, Wang Qin, Lin Bin, Yang Chao, Guo Na, Fang Xiang, Yang Huanhuan, Wang Yiyun, Gao Ke, Ding Shuai, Zhang Zhi, Duan Jilin, Chen Hongqi, Su Dengkui, Feng Jun, Liu Zhibo, Wei Shaogang, He Wen, Song Junlong, Li Yanbo, Wei Lujie. 2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geoscientica Sinica, 37(06): 663~690(in Chinese with English abstract).
    Tang Juxing, Wang Q, Yang Huanhuan, Gao Xin, Zhang Zebin, Zhou Bing. 2017. Mineralization, exploration andresource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet.Acta Geoscientica Sinica, 38(05):571~613 (in Chinese with English abstract).
    Taylor S R, McLennan S M. 1995. Layered Igneous Rocks. San Francisco: Freeman WH & CO, 150~203.
    Wang B D, Wang L Q, Chung S L, Chen J L, Yin F G, Liu H, Li X B, Chen L K. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.
    Wang Q, Zhu D C, Zhao Z D, Liu S A, Chung S L, Li S M, Liu D, Dai J G, Wang L Q, Mo X X. 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198~199(3):24~37.
    Wang Qin, Lin Bin, Tang Juxing, Song Yang, Li Yubin, Hou Junfu, Li Yubin, Wei Lujie. 2018. Diagenesis, lithogenesis and geodynamic setting of intrusions in Senadong area, Duolong district, Tibet. Earth Science, 43(04):1125~1141(in Chinese with English abstract).
    Watson E B, Harrison T M. 1983. Zircon saturation revisited, temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295~304.
    Weaver B L. 1991. The origin of ocean island basalt end member compositions: trace element and isotopic constrains. Earth and Planetary Science Letters, 104(2-4): 381~397.
    Wei S G, Tang J X, Song Y, Liu Z B, Feng J, Li Y B. 2017. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108~113 Ma magmatism in the western Qiangtang terrane. Journal of Asian Earth Sciences, 138: 588~607.
    Wei Shaogang, Tang Juxing, Song Yang, Liu Zhibo, Wang Qin, Lin Bin, He Wen, Feng Jun. 2017. Petrogenesis, zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet, and its tectonic significance. Acta Geologica Sinica, 91(1):132~150 (in Chinese with English Abstract).
    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.
    Yang Jialin, Gu Yuchao, Yang Fengchao, Li Dongtao, Ju Nan, Jia Hongxiang. 2018. SHRIMP U-Pb ages, elements geochemistry and Hf isotopic characteristics of the Dajinshan granite in Liaodong peninsula and geological significance. Geological Review, 64(6):1541~1556 (in Chinese with English abstract).
    Yin A, Harrison T M. 2003. Geologicevolution of the Himalayan-Tibetan orogen. Annual Review of Earth & Planetary Sciences, 28(28): 211~280.
    Yu Feng. 2010. Petrology,geochemistry and petrogenesis of the granitoid in southern Yanhu of Gangdese, Tibet. Dissertation for master degree of China University of Geosciences (Beijing), 1~62 (in Chinese with English abstract).
    Yu Yushuai, Gao Yuan, Yang Zhusen, Tian Shihong, Zhou Yun, Zhang Weiqiang. 2018. Geochronology and genesis of quartz diorite-porphyrites of the Deneng copper polymetallic deposit, Coqen, Tibet, China: evidence from LA-ICP-MS zircon U-Pb dating, geochemistry and Sr-Nd-Pb isotopes. Acta Geologica Sinica, 92(7):1458~1473 (in Chinese with English abstract).
    Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Pan G T, Wu F Y. 2009a. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469: 48~60.
    Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009b. Geochemical investigation of Early Cretaceous igneous rocks along an east-westtraverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268: 298~312.
    Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301: 241~255.
    Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.
    Zhu D C, Li S M, Cawood P A, Wang Q, Zhao Z D, Liu S A, Wang L Q. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245:7~17.
    Zhu Dingcheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes.Science China (Ser D-Earth Sci), 39(07):833~848 (in Chinese with English abstract).
    Zindler A, Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493~573.
    参考文献常青松, 朱弟成, 赵志丹, 董国臣, 莫宣学, 刘勇胜, 胡兆初. 2011. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义.岩石学报, 27(07): 2034~2044.
    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595~2604.
    林彬, 陈毓川, 唐菊兴, 宋扬, 王勤, 冯军, 李彦波, 唐晓倩, 林鑫, 刘治博, 王艺云, 方向, 杨超, 杨欢欢, 费凡, 李力, 高轲. 2016. 西藏多龙矿集区地堡Cu(Au)矿床含矿斑岩锆石U-Pb测年、Hf同位素组成及其地质意义.地质论评, 62(6):1565~1578.
    林彬, 陈毓川, 唐菊兴, 宋扬, 王勤, 方向, 刘治博, 王艺云, 冯军, 李彦波, 杨欢欢, 陈列, 付燕刚. 2017. 藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及成矿预测. 地质学报, 91(9):1942~ 1958.
    莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3):135~148.
    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化.岩石学报, 22(03):521~533.
    曲晓明, 辛洪波, 杜德道, 陈华. 2013. 西藏班公湖-怒江缝合带中段A-型花岗岩的岩浆源区与板片断离.地质学报, 87(6):759~772.
    宋彪, 张玉海, 万渝生. 2002. 锆石 SHRIMP样品靶制作年龄测定及有关现象讨论. 地质论评, 48(增刊):26~30.
    隋清霖. 2014. 西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义.中国地质大学(北京)硕士学位论文,1~99.
    孙德有, 吴福元, 张艳斌, 高山. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 02: 174~181.
    唐菊兴, 张志, 李志军, 孙燕, 姚晓峰, 胡正华, 王红星, 宋俊龙, 何林. 2013. 西藏尕尔穷-嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向.地球学报, 34(04):385~394.
    唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高轲, 方向, 谭江云. 2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报, 35(01):6~10.
    唐菊兴, 宋扬, 王勤, 林彬, 杨超, 郭娜, 方向, 杨欢欢, 王艺云, 高轲, 丁帅, 张志, 段吉琳,陈红旗, 粟登逵, 冯军, 刘治博, 韦少港, 贺文, 宋俊龙, 李彦波, 卫鲁杰. 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床.地球学报, 37(06):663~690.
    唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(05):571~613.
    王勤, 林彬, 唐菊兴, 宋扬, 李彦波, 侯俊富, 李玉彬, 卫鲁杰. 2018. 多龙矿集区色那东岩体年龄、成因与动力学背景.地球科学, 43(04):1125~1141.
    韦少港, 唐菊兴, 宋扬, 刘治博, 王勤, 林彬, 贺文, 冯军. 2017. 西藏班公湖-怒江缝合带美日切错组中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义. 地质学报, 91(1):132~150.
    杨佳林, 顾玉超, 杨凤超, 李东涛, 鞠楠, 贾宏翔. 2018. 辽东半岛大金山花岗岩体SHRIMP U-Pb 年龄、元素地球化学和Hf同位素特征及地质意义. 地质论评, 64(6):1541~1556.
    于枫. 2010. 西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因.中国地质大学(北京) 硕士学位论文,1~62.
    于玉帅,高原,杨竹森,田世洪,周云,张炜强. 2018. 西藏措勤县德能铜多金属矿床石英闪长玢岩时代与成因:LA-ICP-MS锆石U-Pb年代学、地球化学和Sr-Nd-Pb同位素证据. 地质学报, 92(07):1458~1473.
    朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑:地球科学), 39(07):833~848.
    ? 四川省地质调查院.2004.中国人民共和国区域地质调查报告1∶250000革吉县幅.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700