用户名: 密码: 验证码:
高温处理对中间相沥青基炭纤维结构与热导率的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature
  • 作者:樊桢 ; 曹敏 ; 杨文彬 ; 朱世鹏 ; 冯志海
  • 英文作者:FAN Zhen;Cao Min;YANG Wen-bin;ZHU Shi-peng;FENG Zhi-hai;Key Laboratory of Advanced Functional Composite Materials,Aerospace Research Institute of Materials and Processing Technology;Equipment Project Management Center;
  • 关键词:中间相沥青基炭纤维 ; 结构 ; 热导率 ; 高温处理
  • 英文关键词:MPCFs;;Structure;;Thermal conductivity;;Heat treatment
  • 中文刊名:XTCL
  • 英文刊名:New Carbon Materials
  • 机构:航天材料及工艺研究所先进功能复合材料技术重点实验室;装备项目管理中心;
  • 出版日期:2019-02-15
  • 出版单位:新型炭材料
  • 年:2019
  • 期:v.34
  • 基金:先进功能复合材料技术重点实验室基金~~
  • 语种:英文;
  • 页:XTCL201901008
  • 页数:6
  • CN:01
  • ISSN:14-1116/TQ
  • 分类号:50-55
摘要
采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱仪(Raman)及X射线衍射仪(XRD)考察了中间相沥青基炭纤维在不同热处理温度下的结构及形貌变化,并采用3ω法对经不同温度处理后的纤维热导率进行了表征。结果表明,中间相沥青基炭纤维的石墨化度与热导率随着热处理温度的升高而增大,经3000℃处理后纤维的热导率最高可达518W/m·K。此外,还探讨了中间相沥青基炭纤维结构、热导率及热处理温度之间的相互关系,发现中间相沥青炭纤维的石墨化过程存在3个阶段,在不同温度区间内分别对应石墨微晶的生长和取向。
        The evolution of microstructure and morphology of mesophase pitch-based carbon fibers(MPCFs) with heat treatment temperature(HTT) was investigated by SEM,TEM,Raman spectroscopy and XRD.The thermal conductivity of the MPCFs was examined by a modified 3ω method.Results indicate that the degree of graphitization and the thermal conductivity of the MPCFs increase with HTT.The thermal conductivity of the MPCFs reaches 518 W/m·K at a HTT of 3000 ℃.The thermal conductivity of MPCFs varies linearly with HTT in two distinct ranges,1000-2000 and 2300-3000 ℃,that respectively correspond to the growth and orientation of graphite crystallites.
引文
[1]Sihn S,Ganguli S,Anderson D P,et al.Enhancement of through-thickness thermal conductivity of sandwich construction using carbon foam[J].Composites Science and Technology,2012,72(7):767-773.
    [2]Silva C,University T A,Station C,et al.In-plane thermal conductivity in thin carbon fiber composites[J].Journal of Thermophysics&Heat Transfer,2015,21(3):460-467.
    [3]Li T Q,Xu Z H,Hu Z J,et al.Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J].Carbon,2010,48(3):924-925.
    [4]Golecki I,Xue L,Leung R,et al.Properties of high thermal conductivity carbon-carbon composites for thermal management applications[C].High temperature electronic materials,devices and sensors conference.USA:Allied-Signal Inc.,Morristow n NJ,1998:190-195.
    [5]Manocha L M,Warrier A,Manocha S,et al.Thermophysical properties of densified pitch based carbon/carbon materials-I.Unidirectional composites[J].Carbon,2006,44(3):480-487.
    [6]Hino T,Akiba M.Japanese development of fusion reaction plasma components[J].Fusion Engineering and Design,2000,49:97-105.
    [7]Murakami M,Nishkin K,Nakamura K,et al.High-quality and highly oriented graphite block from polycondensation polymer films[J].Carbon,1992,30(2):255-262.
    [8]Glass D E.Ceramic matrix composite(CMC)thermal protection systems(TPS)and hot structures for hypersonic vehicles[C].The 15thAIAA International Space Planes and Hypersonic Systems and Technologies Conference,2008:AIAA-2008-2682.
    [9]Edie D D,Pitch and Mesophase Fibers[M].In:Figueiredo(Eds.),Carbon Fibers,Filaments and Composites,Kluwer Academic Publishers,Boston,1990:43-72.
    [10]Edie D D,Stoner E G.The Effect of Microstructure and Shape on Carbon Fiber Properties[M].In:Buckley J D,Edie D D(Eds.),Carbon-Carbon Materials and Composites,Noyes Publications,New York,1993:41-69.
    [11]Feng Z H,Fan Z,Kong Q,et al.Effect of high temperature on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J].New Carbon Materials,2014,29(5):357-362.
    [12]Xiao M,Du X S,Meng Y Z,et al.The influence of thermal treatment conditions on the structures and electrical conduct ivies of graphite oxide[J].New Carbon Materials,2004,19(2):92-96.
    [13]Bamborin M Y,Yartsev D V,Kolesnikov S A.Effect of hightemperature treatment on carbon-carbon composite material X-ray structural properties and thermal conductivity[J].Refractories&Industrial Ceramics,2013,54(4):319-323.
    [14]Fan Z,Yu L Q,Li W,et al.Design and preparation of carbon/carbon composites with high thermal conductivity[J].Materials China,2017,36(5):369-376.
    [15]Yuan G M.Research on preparation of carbon materials with high thermal conductivity[D].Dissertation for Ph.D,Wuhan University of Science and Technology,2012.
    [16]Wang Z L,Tang D W,Zhang W G.Simultaneous measurements of the thermal conductivity,thermal capacity and thermal diffusivity of an individual carbon fiber[J].Journal of Physics D-Applied Physics,2007,15(40):4686-4690.
    [17]Qiu L,Zheng X H,Zhu J,et al.The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrilebased carbon fiber[J].Carbon,2013,51:265-273.
    [18]Klett J W.Heat transfer in carbon/carbon composite materials[D].Dissertation for Ph.D,Clemson University,1994.
    [19]Katagiri G,Ishida H,Ishitani A.Raman spectra of graphite edge planes[J].Carbon,1988,26(4):565-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700