用户名: 密码: 验证码:
相变微胶囊/环氧树脂复合泡沫的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Phase Change Microcapsule/Epoxy Resin Composite Foam
  • 作者:丁泽 ; 陈昭朋 ; 张凯 ; 杨文彬 ; 范敬辉 ; 吴菊英 ; 何方方
  • 英文作者:Ze Ding;Zhaopeng Chen;Kai Zhang;Wenbin Yang;Jinghui Fan;Juying Wu;Fangfang He;State Key Laboratory of Environment-Friendly Energy Materials,Southwest University of Science and Technology;General Engineering Institute,China Institute of Engineering Physics;
  • 关键词:复合相变材料 ; 微胶囊 ; 环氧树脂 ; 渗漏率 ; 热导率
  • 英文关键词:composite phase change material;;microcapsule;;epoxy resin;;leakage rate;;thermal conductivity
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:西南科技大学环境友好能源材料国家重点实验室;中国工程物理研究院总体工程研究所;
  • 出版日期:2019-02-02 16:50
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金委员会-中国工程物理研究院联合基金资助项目(U1530102,U1730114);; 四川省科技厅应用基础研究重点项目(2017JY0149);; 四川省教育厅科研创新团队项目(17TD0043);; 环境友好能源材料国家重点实验室开放基金(17kffk15)
  • 语种:中文;
  • 页:GFZC201901023
  • 页数:6
  • CN:01
  • ISSN:51-1293/O6
  • 分类号:140-145
摘要
以石蜡@密胺树脂微胶囊(Pn@MF)为相变填料,环氧树脂为支撑材料,通过将相变微胶囊封装在环氧树脂泡沫中得到一种复合相变材料(CPCMs)。通过扫描电镜表征表明相变微胶囊与环氧树脂泡沫相容性良好。随着微胶囊含量的增加,差示扫描量热分析表明CPCMs的相变焓值增大,当Pn@MF含量为40%时,焓值达到102. 2 J/g,其泄漏率仅为1. 31%,具有较低的渗漏率; CPCMs的热导率始终低于0. 14 W/(m·K)。随着发泡剂含量的增加,CPCMs的渗漏率降低,热导率降低,而力学性能先升高后降低。发泡温度的升高会对渗漏率、热导率和力学性能产生不利影响。CPCMs的低导热率和低泄漏率可应用于热能储存领域。
        Using Paraffin@ melamine resin microcapsules( Pn@ MF) as phase change fillers and epoxy resin as support material,a series of composite phase change materials( CPCMs) were obtained by embedding Pn@ MF in epoxy resin foam. Scanning electron microscopy shows that the Pn@ MF and the epoxy resin foam have good compatibility.With increase of the microcapsule content,the DSC test shows that the phase change enthalpy of CPCMs increases.When the Pn@ MF content is 40%,the enthalpy value reaches 102. 2 J/g and its leakage rate is only 1. 31%,which has a low leakage rate. The thermal conductivity of CPCMs is always lower than 0. 14 W/( m·K). With increase of the foaming agent content,the leakage rate of CPCMs decreases,the thermal conductivity decreases,and the mechanical properties first increase and then decrease. An increase in the foaming temperature adversely affects the leak rate,thermal conductivity,and mechanical properties. The low thermal conductivity and leakage rate of CPCMs can be used in the thermal energy storage field.
引文
[1] Liang W,Wu Y,Sun H,et al. Halloysite clay nanotubes based phase change material composites with excellent thermal stability for energy saving and storage[J]. Rsc Adv.,2016,6:19669-19675.
    [2] Zhang H,Xing F,Cui HZ,et al. A novel phase-change cement composite for thermal energy storage:fabrication,thermal and mechanical properties[J]. Appl. Energy,2016,170:130-13.
    [3] Mohamed S A,Al-Sulaiman F A,Ibrahim N I,et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renew. Sust. Energ. Rev.,2017,70:1072-1089.
    [4] Abokersh M H,Osman M,El-Baz O,et al. Review of the phase change material(PCM)usage for solar domestic water heating systems(SDWHS)[J]. Int. J. Energy Res.,2018,42:329-357.
    [5] Milián Y E,Gutiérrez A,Grágeda M,et al. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J]. Renew. Sust. Energ. Rev.,2017,73:983-999.
    [6] Ibrahim N I,Al-Sulaiman F A,Rahman S,et al. Heat transfer enhancement of phase change materials for thermal energy storage applications:a critical review[J]. Renew. Sust. Energ. Rev.,2017,74:26-50.
    [7] Li W,Wan H,Lou H,et al. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam[J]. Energy,2017,127:671-679.
    [8] Wang H,Wang F,Li Z,et al. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material[J]. Appl. Energ.,2016,176:221-232.
    [9] Prabhu Bose A N,Amirthamb V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renew. Sust. Energ. Rev.,2016,65:81-100.
    [10] Rybinski P,Anyszka R,Imiela M,et al. Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials[J]. J. Therm. Anal. Calorim.,2017,127:2383-2396.
    [11]程金旭,张凯,杨文彬,等.三元乙丙橡胶/石蜡弹性定形相变材料的制备及性能表征[J].高分子材料科学与工程,2017,33(10):160-163.Cheng J X,Zhang K,Yang W B,et al. Preparation and performance characterization of EPDM/paraffin elastic shaped phase change materials[J]. Polymer Materials Science&Engineering,2017,33(10):160-163.
    [12] Zhang L,Yang W,Jiang Z,et al. Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance[J]. Appl. Energy.,2017,197:354-363.
    [13] Jiang Z,Yang W,He F,et al. Modified phase change microcapsules with calcium carbonate and graphene oxide shells for enhanced energy storage and leakage prevention[J]. ACS Sustain.Chem. Eng.,2018,6:5182-5191.
    [14] Alva G,Lin Y,Liu L,et al. Synthesis,characterization and applications of microencapsulated phase change materials in thermal energy storage:a review[J]. Energy Build.,2017,144:276-294.
    [15] You M,Zhang X X,Li W,et al. Effects of Micro PCMs on the fabrication of Micro PCMs/polyurethane composite foams[J]. Thermochim. Acta,2008,472:20-24.
    [16] Arce M E,Alvarez Feijoo M A,Suarez Garcia A,et al. Novel formulations of phase change materials-epoxy composites for thermal energy storage[J]. Mater.(Basel),2018,11:195-213.
    [17]黄全国.石蜡相变微胶囊的制备及性能研究[D].成都:西南科技大学,2014.Huang Q G. Preparation and properties of paraffin phase change microcapsules[D]. Chengdu:Southwest University of Science and Technology,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700