用户名: 密码: 验证码:
小拟南芥转运蛋白基因及NHX2基因的克隆与表达
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of transporter genes of Arabidopsis pumila and cloning and expression analysis of NHX2 gene
  • 作者:孙琦 ; 黄薇 ; 刘芳 ; 金玉环 ; 肖建旺 ; 黄先忠
  • 英文作者:Sun Qi;Huang Wei;Liu Fang;Jin Yuhuan;Xiao Jianwang;Huang Xianzhong;Special plant genomics laboratory,College of Life Sciences,Shihezi University;
  • 关键词:小拟南芥 ; Na~+/H~+逆向转运蛋白 ; 基因克隆 ; 组织表达
  • 英文关键词:Arabidopsis pumila.;;Na~+/H~+antiporter;;gene clone;;organizational expression
  • 中文刊名:SHZN
  • 英文刊名:Journal of Shihezi University(Natural Science)
  • 机构:石河子大学生命科学学院特色植物基因组学实验室;
  • 出版日期:2019-04-15
  • 出版单位:石河子大学学报(自然科学版)
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(U1303302)
  • 语种:中文;
  • 页:SHZN201902010
  • 页数:10
  • CN:02
  • ISSN:65-1174/N
  • 分类号:74-83
摘要
转运蛋白(transport protein)是膜蛋白的一大类,介导生物膜内外的化学物质及信号的交换。植物体内存在多个与Na~+转运相关的蛋白,其中液泡膜Na~+/H~+逆向转运蛋白(Vacuolar Na~+/H~+antiporter,NHX)在离子稳态和提高植物耐盐性方面发挥着重要作用。为了深入了解转运蛋白基因在短命植物小拟南芥(Arabidopsis pumila)耐盐方面的作用,本研究首先基于小拟南芥响应高盐胁迫叶片转录组数据筛选出1157个转运蛋白基因,按功能分为Na~+转运蛋白,K~+转运蛋白,Ca~(2+)转运蛋白,ABC转运蛋白以及糖转运蛋白等,其中功能注释为Na~+转运蛋白的基因有24个。K均值(K-means)聚类分析结果显示,1157个转运蛋白基因分布于20个K subcluster,其中在K6、K9、K15子聚类中的基因数量分布较多,分别为172、193、190个。在分布于K6子聚类的Na~+转运蛋白基因中,有一个编码NHX2蛋白的基因经盐胁迫处理后明显上调表达。采用RT-PCR克隆了Ap NHX2基因,Ap NHX2开放阅读框1626 bp,编码541个氨基酸。Ap NHX2蛋白是一个典型的跨膜转运蛋白,具有12个跨膜结构区。系统进化分析表明Ap NHX2与拟南芥At NHX2亲缘关系最近。实时荧光定量PCR分析显示,Ap NHX2基因在小拟南芥各组织中均有表达,但在花中表达量最高。为进一步研究该基因的功能,构建了过量表达载体35S∶Ap NHX2并转化农杆菌GV3101。本研究为进一步阐述转运蛋白基因在小拟南芥响应盐胁迫中的功能机制奠定了基础。
        Transport proteins are a large class of membrane proteins,which mediate the exchange of chemical substances and signal inside and outside biomembranes.There are several different kinds of transport proteins related to Na~+ transport in plants,of which vacuolar Na~+/H~+ antiporters play an important role in ion homeostasis and salt tolerance.To understand the molecular functions of transporter genes in salt tolerance of ephemeral plant Arabidopsis pumila,1157 transporter protein-related genes were identified based on the transcriptome data,which were divided into six categories based on their annotated functions: calcium transporter,potassium transporter,sodium transporter,ABC transporter,sugar transporter and other transporters. There are 24 genes annotated as sodium transporter-related genes.K-means clustering analysis showed that 1157 transporter genes were distributed in 20 K subclusters,of which the number of genes in K6,K9 and K15 sub-clusters was bigger,and their number was 172,193 and 190,respectively. A Na~+ antiporter gene NHX2 was categoried into the K6 sub-cluster and its expression was obviously up-regulated in response to salinity. Ap NHX2 gene was cloned through RT-PCR,and the length of open reading frame was 1626 bp,encoding 541 amino acid residues. Bioinformatics prediction revealed that Ap NHX2 protein has twelve transmembrane domains with structure features of a typical transmembrane protein.Phylogenetic analysis showed that Ap NHX2 is closely related to the Arabidopsis thaliana At NHX2.In addition,quantitative real-time analysis showed that Ap NHX2 was expressed in all tissues of Arabidopsis pumila with the highest level in flowers. To further study its function,a plant overexpression vector 35 S ∶Ap NHX2 was constructed and then transformed into Agrobacterium tumerfaciens strain GV3101.This study is helpful to elucidate the functional mechanism of transporter genes in response to salt stress in Arabidopsis pumila.
引文
[1]Heuer S,Gaxiola R,Schilling R,et al.Improving phosphorus use efficiency-a complex trait with emerging opportunities[J].Plant Journal,2017,90(5):868-885.
    [2]Zeng Y,Li Q,Wang H,et al.Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress[J].Plant Biotechnology Journal,2018,16(1):310-321.
    [3]Munns R,Gilliham M.Salinity tolerance of crops-what is the cost?[J].New Phytologist,2015,208(3):668-673.
    [4]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59(1):651-681.
    [5]Xu G,Fan X,Miller A J.Plant nitrogen assimilation and use efficiency[J].Annual Review of Plant Biology,2012,63(1):153-182.
    [6]Roy S J,Negr2o S,Tester M.Salt resistant crop plants[J].Current Opinion in Biotechnology,2014,26:115-124.
    [7]Mickelbart M V,Hasegawa P M,Bailey-Serres J.Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability[J].Nature Reviews Genetics,2015,16(4):237-251.
    [8]Yang Y H,Guo Z,Liu Q Q,et al.Growth,physiological adaptation,and NHX gene expression analysis of Iris halophila under salt stress[J].Environmental Science&Pollution Research,2018:25(25):25207-25216.
    [9]Zhou Y,Yin X,Wan S,et al.The Sesuvium portulacastrum plasma membrane Na+/H+antiporter Sp SOS1 complemented the salt sensitivity of transgenic Arabidopsis sos1 mutant plants[J].Plant Molecular Biology Reporter,2018,36(4):553-563.
    [10]Li X,Wang F,Sun D,et al.Cloning and characterization of Suc NHX1,a novel vacuolar Na+/H+antiporter from the halophyte Suaeda corniculata that enhances the saline-alkali tolerance in Arabidopsis by its overexpression[J].Plant Cell,Tissue and Organ Culture(PCTOC),2018,134(3):395-407.
    [11]Zhu J.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.
    [12]Deinlein U,Stephan A B,Horie T,et al.Plant salt-tolerance mechanisms[J].Trends in Plant Science,2014,19(6):371-379.
    [13]Davenport R,James R A,Zakrisson-plogander A,et al.Control of sodium transport in durum wheat[J].Plant Physiology,2005,137(3):807-818.
    [14]Yamaguchi T,Hamamoto S,Uozumi N.Sodium transport system in plant cells[J].Frontiers in Plant Science,2013,4:410.
    [15]Xu H X,Jiang X Y,Zhan K H,et al.Functional characterization of a wheat plasma membrane Na+/H+antiporter in yeast[J].Archives of Biochemistry and Biophysics,2008,473:8-15.
    [16]Yokoi S,Quintero F J,Cubero B,et al.Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiporters in the salt stress response[J].Plant Journal,2002,30:529-539.
    [17]He C,Yan J,Zhang H,et al.Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J].Plant Cell Physiology,2005,46(11):1848-1854.
    [18]Wu Y Y,Chen Q J,Wang X C.Salt-tolerant transgenic perennial ryegrass(Lolium perenne L.)obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene[J].Plant Science,2005,169:65-73.
    [19]Apse M P,Aharon G S,Snedden W A,et al.Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis[J].Science,1999,285(5431):1256-1258.
    [20]Zhang H X,Blumwald E.Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J].Nature Biotechnology,2001,19(8):765-768.
    [21]Albaladejo I,Meco V,Plasencia F,et al.Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress:from leaf anatomical adaptations to molecular responses[J].Environmental and Experimental Botany,2017,135:1-12.
    [22]张海波,刘彭,刘立鸿,等.新疆短命植物小拟南芥耐盐性的初步研究[J].西北植物学报,2007,(2):286-290.Zhang H B,Liu P,Liu L H,et al.Preliminary study on salt tolerance of ephemeral plant Arabidopsis pumila in Xinjiang[J].Acta Bot Boreal-Occident Sin,2007,(2):286-290.
    [23]院海英,顾超,徐芳,等.小拟南芥Na+/H+逆向转运蛋白基因的克隆及生物信息学分析[J].石河子大学学报(自然科学版),2011,29(4):401-407.Yuan H Y,Gu C,Xu F,et al.Identification and bioinformatics analysis of a vacuolar Na+/H+antiporter gene in Arabidopsis pumila[J].Journal of Shihezi University(Natural Science),2011,29(4):401-407.
    [24]徐芳,赵云霞,魏艳玲,等.小拟南芥液泡膜H+~PPase基因Op VP1的克隆,序列分析及表达[J].石河子大学学报(自然科学版),2013,31(1):77-82.Xu F,Zhao Y X,Wei Y L,et al.Cloning,sequence analysis and expression of a vacuolar H+-pryophosphatase gene Op VP1 from ephemeral plant Olimarabidopsis pumila[J].Journal of Shihezi University(Natural Science),2013,31(1):77-82.
    [25]林军,张亮,黄先忠.新疆小拟南芥NAC转录因子ApNAC055的克隆及表达分析[J].石河子大学学报(自然科学版),2017,35(6):747-753.Lin J,Zhang L,Huang X Z.Molecular cloning and expression analysis of Ap NAC055 from Arabidopsis pumila[J].Journal of Shihezi University(Natural Science),2017,35(6):747-753.
    [26]黄先忠,张鹏,吕新华,等.新疆小拟南芥Ap CBF1基因的克隆及其过量表达转基因的研究[J].石河子大学学报(自然科学版),2009,27(3):265-268.Huang X Z,Zhang P,Lu X H,et al.Molecular cloning and overexpression of Ap CBF1 from Olimarabidopsis pumila in Xinjiang[J].Journal of Shihezi University(Natural Science),2009,27(3):265-268.
    [27]赵云霞,郭丹丽,魏艳玲,等.新疆无苞芥Na+/H+逆向转运蛋白基因Op NHX1的克隆、表达分析与功能验证[J].生物技术通报,2014,(7):74-80.Zhao Y X,Guo D L,Wei Y L,et al.Cloning,expressing and functional analysis of Na+/H+antiporter gene Op N-HX1 from Olimarabidopsis pumila in Xinjiang[J].Biotechnology Bulletin,2014,(7):74-80.
    [28]魏艳玲,贾跃腾,黄先忠,等.新疆无苞芥Op NAC083基因的克隆与表达分析[J].石河子大学学报(自然科学版),2015,33(2):222-229.Wei Y L,Jia Y T,Huang X Z,et al.Molecular cloning and expression analyes of Op NAC083 from Olimarabidopsis pumila[J].Journal of Shihezi University(Natural Science),2015,33(2):222-229.
    [29]郑丽洁,林军,黄先忠.小拟南芥双键还原酶基因Op D-BR的克隆及表达分析[J].石河子大学学报(自然科学版),2016,34(2):251-258.Zheng L J,Lin J,Huang X Z.Molecular cloning and expression analysis of Op DBR from Olimarabidopsis pumila[J].Journal of Shihezi University(Natural Science),2016,34(2):251-258.
    [30]Holmes G D,Hall N E,Gendall A R,et al.Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australis clones[J].Frontiers in Plant Science,2016,7:432.
    [31]李红婷,魏露阳,李中虎,等.滨麦叶片转录组分析[J].麦类作物学报,2018,38(9):1084-1093.Li H T,Wei L Y,Li Z H,et al.Transcriptome analysis of Leymus mollis leaf[J].Journal of Triticeae Crops,2018,38(9):1084-1093.
    [32]Yang L F,Jing Y H,Huang W,et al.Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress[J].BMC Genomics,2018,19:717.
    [33]Felsenstein J.Confidence limits on phylogenies:an approach using the bootstrap[J].Evolution,1985,39(4):783-791.
    [34]金玉环,刘芳,黄薇,等.短命植物新疆小拟南芥高盐胁迫处理下内参基因的筛选[J].玉林师范学院学报(自然科学版),2018,39(2):2-9.Jin Y H,Liu F,Huang W,et al.The screening of internal reference genes in Xinjiang ephemeral plants Arabidopsis pumila under high salt stress conditions[J].Joumal of Yulin Normal University(Natural Science),2018,39(2):2-9.
    [35]Rahman H,Jagadeeshselvam N,Valarmathi R,et al.Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet(Eleusine coracana L.)through RNA-sequencing[J].Plant Molecular Biology,2014,85(4-5):485-503.
    [36]Au K F,Underwood J G,Lee L,et al.Improving PacBio long read accuracy by short read alignment[J].PLOSONE,2012,7(10):e46679.
    [37]Koren S,Schatz M C,Walenz B P,et al.Hybrid error correction and de novo assembly of single-molecule sequencing reads[J].Nature Biotechnology,2012,30(7):693-700.
    [38]Hackl T,Hedrich R,Schultz J,et al.Proovread:large-scale high-accuracy PacBio correction through iterative short read consensus[J].Bioinformatics,2014,30(21):3004-3011.
    [39]Chaisson M J P,Huddleston J,Dennis M Y,et al.Resolving the complexity of the human genome using singlemolecule sequencing[J].Nature,2015,517(7536):608-611.
    [40]Chen X,Bracht J R,Goldman A D,et al.The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development[J].Cell,2014,158(5):1187-1198.
    [41]Shen X,Wang Z,Song X,et al.Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis[J].Plant Molecular Biology,2014,86(3):303-317.
    [42]Zhang J,Jiang D,Liu B,et al.Transcriptome dynamics of a desert poplar(Populus pruinosa)in response to continuous salinity stress[J].Plant Cell Reports,2014,33(9):1565-1579.
    [43]邱生平,周国安,陆驹飞,等.一个新的水稻液泡膜Na+/H+逆向转运蛋白基因的克隆及表达特征[J].中国水稻科学,2006,20(2):119-124.Qiu S P,Zhou G A,Lu J F,et al.Molecular cloning and expression analysis of a new vacuolar Na+/H+antiporter gene in rice(Orvza sativa)[J].Chinese Journal of Rice Science,2006,20(2):119-124.
    [44]李中虎,李岚,武海蒙,等.滨麦Lm NHX2基因及响应盐分胁迫的表达分析[J].鲁东大学学报(自然科学版),2018,34(1):50-55.Li Z H,Li L,Wu H M,et al.Analysis of Lm NHX2 and its response to salt stress in Leymus mollis.L[J].Journal of Ludong University(Natural Science Edition),2018,34(1):50-55.
    [45]Zhang Y M,Zhang H M,Liu Z H,et al.The wheat NHXantiporter gene Ta NHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium[J].Plant Molecular Biology,2014,87(3):317-327.
    [46]林抗雪,刘修杰,孙石,等.转Ta NHX2大豆的耐盐性分析[J].中国农业科学,2015,48(20):3998-4007.Lin K X,Liu X J,Sun S H,et al.Salt tolerance analysis of Ta NHX2 overexpression transgenic soybean[J].Scientia Agricultura Sinica,2015,48(20):3998-4007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700