用户名: 密码: 验证码:
拔节期水稻光合碳输入的动态变化及其对施氮的响应:~(13)C-CO_2脉冲标记
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of Rice Photosynthesized Carbon Input and Its Response to Nitrogen Fertilization at the Jointing Stage:~(13)C-CO_2 Pulse-labeling
  • 作者:陈珊 ; 祝贞科 ; 袁红朝 ; 王久荣 ; 彭佩钦 ; 葛体达 ; 吴金水
  • 英文作者:CHEN Shan;ZHU Zhen-ke;YUAN Hong-zhao;WANG Jiu-rong;PENG Pei-qin;GE Ti-da;WU Jin-shui;College of Environmental Science and Engineering,Central South University of Forestry and Technology;Key Laboratory of Agro-ecological Processes in Subtropical Region,Institute of Subtropical Agriculture,Chinese Academy of Sciences;
  • 关键词:水稻光合碳 ; 拔节期 ; 施氮 ; 13C脉冲标记 ; 根际 ; 非根际
  • 英文关键词:rice photosynthesized carbon;;jointing stage;;nitrogen application;;13C pulse-labeling;;rhizosphere;;bulk
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中南林业科技大学环境科学与工程学院;中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;
  • 出版日期:2017-08-23 10:29
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41501321,41301276);; 湖南省自然科学基金项目(2016JJ2136);; 中南林业科技大学创新基金项目
  • 语种:中文;
  • 页:HJKZ201801044
  • 页数:8
  • CN:01
  • ISSN:11-1895/X
  • 分类号:334-341
摘要
水稻光合碳是稻田土壤有机碳的重要来源之一,其在土壤中输入与分配特征受水稻生长状况和土壤肥力的影响.施肥是影响水稻生长的关键因素,为了探讨施氮对水稻拔节期光合碳的传输动态的影响,应用稳定同位素13C-CO2脉冲标记技术,通过盆栽试验,研究光合碳在水稻-(根际/非根际)土壤系统中输入与分配的动态变化及其对施氮的响应.结果表明,施氮显著增加了水稻地上部和根系生物量,降低了水稻根冠比.随着水稻的生长,水稻植株的13C丰度逐渐下降,根际土和非根际土中13C丰度先减少再增加;施氮显著增加了根际土壤中13C丰度,较不施氮相比增加了9.5%~32.6%.施氮使水稻地上部和根系中光合13C含量显著增加,较不施氮处理分别增加了24.5%~134.7%和9.1%~106%.脉冲标记一次性输入的光合13C主要分配在水稻植株体内,不施氮和施氮条件下的分配率分别为85.5%~93.2%和91.3%~95.7%;施氮显著影响光合碳在水稻地上部、根际土和非根际土中的分配特征(P<0.01),标记后26 d,与不施氮处理相比,施氮使光合碳在水稻地上部的分配增加了13.4%,在根际土和非根际土中的分配分别减少了21.9%和52.2%.因此,施氮增加了光合碳在土壤-水稻系统中的分配,但降低了光合碳在土壤中的累积.本研究进一步探讨了施氮条件下水稻拔节期光合碳的分配,为明确氮素对光合碳在水稻拔节期的动态变化以及对土壤有机碳库的影响,和深入了解农田土壤有机质累积提供理论依据和数据支持.
        Photosynthesized carbon(C) is an important source of soil organic C in paddy fields,and its input and distribution are affected by rice growth and soil fertility.Fertilizer application plays an important role in rice growth.The ~(13)C pulse-labeling method was used to quantify the dynamics and distribution of input photosynthesized C in the rice-(rhizosphere-and bulk-) soil system and its response to nitrogen fertilizer(N) application.The results suggested that N fertilization significantly increased the rice aboveground and the root biomass and decreased the rice biomass root/shoot ratio.The amount of assimilated ~(13)C gradually decreased in the rice plants but gradually decreased over 0-6 days and increased over 6-26 days in the rhizosphere and bulk soil during rice growth.N fertilization significantly increased the amount of assimilated ~(13)C in the rhizosphere soil by 9.5%-32.6% compared with the control.In comparison to the unfertilized treatment,the application of N fertilization resulted in higher photosynthetic ~(13)C in rice aboveground and in the root by 24.5%-134.7% and 9.1%-106%,respectively.With the N fertilized and unfertilized treatments,85.5%-93.2% and91.3%-95.7%,respectively,of input photosynthetic~(13)C was distributed in the rice plants.The results suggested that N fertilization significantly affected the distribution of photosynthesized C in the rice-soil system(P<0.01).After 26 days of pulse labeling,the distribution of photosynthetic ~(13)C into rice aboveground was increased by 13.4%,while the distribution into the rhizosphere and bulk soil were decreased by 21.9% and 52.2%,respectively,in the N fertilized treatments compared with the unfertilized treatments.Therefore,the N application increased the distribution of photosynthesized carbon in the soil-rice system but decreased the accumulation in the rhizosphere and bulk soil.The findings of this study provided a theoretical basis for our understanding of the dynamic of photosynthetic C in the plant-soil system and the assimilation of the soil organic matter pool in the paddy soil ecosystem.
引文
[1]王智平,陈全胜.植物近期光合碳分配及转化[J].植物生态学报,2005,29(5):845-850.Wang Z P,Chen Q S.Recently photosynthesized carbon allocation and turnover:a minor review of the literature[J].Acta Phytoecologica Sinica,2005,29(5):845-850.
    [2]连腾祥,王光华,于镇华,等.植物光合碳在根际土壤中的微生物转化与SIP技术[J].土壤与作物,2013,2(2):77-83.Lian T X,Wang G H,Yu Z H,et al.Microbial turnover of photosynthetic carbon in the rhizosphere and SIP technology-a review[J].Soil and Crop,2013,2(2):77-83.
    [3]李苗苗,聂三安,陈晓娟,等.水稻光合同化碳在土壤不同粒径、密度分组中的分配特征[J].环境科学,2013,34(4):1568-1575.Li M M,Nie S A,Chen X J,et al.Distribution characteristics of rice photosynthesized carbon in soil aggregates of different size and density[J].Environmental Science,2013,34(4):1568-1575.
    [4]祝贞科,沈冰洁,葛体达,等.农田作物同化碳输入与周转的生物地球化学过程[J].生态学报,2016,36(19):5987-5997.Zhu Z K,Shen B J,Ge T D,et al.Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems[J].Acta Ecologica Sinica,2016,36(19):5987-5997.
    [5]Johnson D,Leake J R,Ostle N,et al.In situ13C O2pulselabelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil[J].New Phytologist,2002,153(2):327-334.
    [6]Kuzyakov Y,Domanski G.Model for rhizodeposition and CO2efflux from planted soil and its validation by14C pulse labelling of ryegrass[J].Plant and Soil,2002,239(1):87-102.
    [7]Ostle N,Ineson P,Benham D,et al.Carbon assimilation and turnover in grassland vegetation using an in situ13CO2pulse labelling system[J].Rapid Communications in Mass Spectrometry,2000,14(15):1345-1350.
    [8]何敏毅,孟凡乔,史雅娟,等.用13C脉冲标记法研究玉米光合碳分配及其向地下的输入[J].环境科学,2008,29(2):446-453.He M Y,Meng F Q,Shi Y J,et al.Estimating photosynthesized carbon distribution and inputs into belowground in a maize soil following13C pulse-labeling[J].Environmental Science,2008,29(2):446-453.
    [9]Ge T D,Yuan H Z,Zhu H H,et al.Biological carbon assimilation and dynamics in a flooded rice-soil system[J].Soil Biology and Biochemistry,2012,48:39-46.
    [10]王群艳,祝贞科,袁红朝,等.不同生育期光合碳在水稻-土壤系统中的分配及输入效率[J].环境科学研究,2016,29(10):1471-1478.Wang Q Y,Zhu Z K,Yuan H Z,et al.Allocation and input efficiency of assimilated carbon in rice-soil systems at different growth stages[J].Research of Environmental Sciences,2016,29(10):1471-1478.
    [11]Atere C T,Ge T D,Zhu Z K,et al.Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via dryingrewetting cycles and nitrogen fertilisation[J].Biology and Fertility of Soils,2017,53(4):407-417.
    [12]Jin J,Wang G H,Liu J D,et al.Seasonal allocation of photosynthetically fixed carbon to the soybean-grown Mollisols in Northeast China[J].Crop and Pasture Science,2011,62(7):563-570.
    [13]乔云发,韩晓增,赵兰坡.长期定量施肥对玉米光合碳分配的影响[J].水土保持学报,2010,24(4):208-212.Qiao Y F,Han X Z,Zhao L P.The respond of photosynthetic carbon allocation of maize to long-term fertilization[J].Journal of Soil and Water Conservation,2010,24(4):208-212.
    [14]谭立敏,吴昊,李卉,等.不同施氮量下水稻分蘖期光合碳向土壤碳库的输入及其分配的量化研究:13C连续标记法[J].环境科学,2014,35(5):1933-1938.Tan L M,Wu H,Li H,et al.Input and distribution of rice photosynthesized carbon in the tillering stage under different nitrogen application following continuous13C labeling[J].Environmental Science,2014,35(5):1933-1938.
    [15]Ge T D,Liu C,Yuan H Z,et al.Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J].Plant and Soil,2015,392:17-25.
    [16]Wang Z P,Li L H,Han X G,et al.Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe[J].Environmental and Experimental Botany,2007,59(1):1-10.
    [17]齐鑫,王敬国.应用13C脉冲标记方法研究不同施氮量对冬小麦净光合碳分配及其向地下输入的影响[J].农业环境科学学报,2008,27(6):2524-2530.Qi X,Wang J G.Distribution and translocation of assimilated C pulse-labeled with13C for winter wheat(Trticum aestivums L.),as Affected by nitrogen supply[J].Journal of Agro-Environment Science,2008,27(6):2524-2530.
    [18]Kuzyakov Y,Domanski G.Carbon input by plants into the soil.Review[J].Journal of Plant Nutrition and Soil Science,2000,163:421-431.
    [19]刘萍,江春玉,李忠佩.13C脉冲标记定量研究施氮量对光合碳在水稻-土壤系统中分布的影响[J].土壤学报,2015,52(3):567-575.Liu P,Jiang C Y,Li Z P.Quantitative research on effects of nitrogen application rate on distribution of photosynthetic carbon in rice-soil system using13C pulse labeling technique[J].Acta Pedologica Sinica,2015,52(3):567-575.
    [20]Kuzyakov Y,Schneckenberger K.Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation[J].Archives of Agronomy and Soil Science,2004,50(1):115-132.
    [21]Lu Y H,Watanabe A,Kimura M.Input and distribution of photosynthesized carbon in a flooded rice soil[J].Global Biogeochemical Cycles,2002,16(4):32-1-32-8.
    [22]王艳哲,刘秀位,孙宏勇,等.水氮调控对冬小麦根冠比和水分利用效率的影响研究[J].中国生态农业学报,2013,21(3):282-289.Wang Y Z,Liu X W,Sun H Y,et al.Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J].Chinese Journal of Eco-Agriculture,2013,21(3):282-289.
    [23]王婷婷,祝贞科,朱捍华,等.施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究[J].环境科学,2017,38(3):1227-1234.Wang T T,Zhu Z K,Zhu H H,et al.Input and distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization[J].Environmental Science,2017,38(3):1227-1234.
    [24]徐国伟,王贺正,翟志华,等.不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J].农业工程学报,2015,31(10):132-141.Xu G W,Wang H Z,Zhai Z H,et al.Effect of water and nitrogen coupling on root morphology and physiology,yield and nutrition utilization for rice[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(10):132-141.
    [25]臧华栋,钱欣,杨学超,等.作物根际沉积氮研究进展[J].中国农业科技导报,2014,16(4):120-126.Zang H D,Qian X,Yang X C,et al.Progress and perspectives of nitrogen rhizodeposition in crops[J].Journal of Agricultural Science and Technology,2014,16(4):120-126.
    [26]尹云峰,杨玉盛,高人,等.植物富集13C标记技术的初步研究[J].土壤学报,2010,47(4):790-793.Yin Y F,Yang Y S,Gao R,et al.A preliminary study on phytoenrichment13C labeling technique[J].Acta Pedologica Sinica,2010,47(4):790-793.
    [27]Lu Y H,Watanabe A,Kimura M.Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J].Biology and Fertility of Soils,2002,36(2):136-142.
    [28]Liang B C,Wang X L,Ma B L.Maize root-induced change in soil organic carbon pools[J].Soil Science Society of America Journal,2002,66(3):845-847.
    [29]张林海,曾从盛,胡伟芳.氮输入对植物光合固碳的影响研究进展[J].生态学报,2017,37(1):147-155.Zhang L H,Zeng C S,Hu W F.Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation[J].Acta Ecologica Sinica,2017,37(1):147-155.
    [30]陈珊,丁咸庆,祝贞科,等.秸秆还田对外源氮在土壤中转化及其微生物响应的影响[J].环境科学,2017,38(4):1613-1621.Chen S,Ding X Q,Zhu Z K,et al.Effect of straw application on the dynamic of exogenous nitrogen and microbial activity in paddy soil[J].Environmental Science,2017,38(4):1613-1621.
    [31]梁国鹏,Houssou A A,吴会军,等.施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响[J].应用生态学报,2016,27(6):1917-1924.Liang G P,Houssou A A,Wu H J,et al.Soil nitrogen content and enzyme activities in rhizosphere and non-rhizosphere of summer maize under different nitrogen application rates[J].Chinese Journal of Applied Ecology,2016,27(6):1917-1924.
    [32]李银坤,陈敏鹏,夏旭,等.不同氮水平下夏玉米农田土壤呼吸动态变化及碳平衡研究[J].生态环境学报,2013,22(1):18-24.Li Y K,Chen M P,Xia X,et al.Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition[J].Ecology and Environmental Sciences,2013,22(1):18-24.
    [33]金剑,王光华,刘晓冰,等.作物生育期内光合碳在地下部的分配及转化[J].生态学杂志,2008,27(8):1393-1399.Jin J,Wang G H,Liu X B,et al.Allocation and transformation of photosynthetic carbon in belowground part of crops during their growth period:a review[J].Chinese Journal of Ecology,2008,27(8):1393-1399.
    [34]魏亮,汤珍珠,祝贞科,等.水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J].环境科学,2017,38(8):3489-3496.Wei L,Tang Z Z,Zhu Z K,et al.Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J].Environmental Science,2017,38(8):3489-3496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700