用户名: 密码: 验证码:
天然气内重整和外重整下SOFC多场耦合三维模拟分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming
  • 作者:谢静 ; 徐明益 ; 班帅 ; 孙晖 ; 周红军
  • 英文作者:XIE Jing;XU Mingyi;BAN Shuai;SUN Hui;ZHOU Hongjun;Institute of New Energy, China University of Petroleum,Beijing;
  • 关键词:天然气 ; 计算机模拟 ; 内重整 ; 外重整 ; 固体氧化物燃料电池
  • 英文关键词:nature gas;;computer simulation;;internal reforming;;external reforming;;solid oxide fuel cells
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(北京)新能源研究院;
  • 出版日期:2018-10-29 16:45
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(21706279)
  • 语种:中文;
  • 页:HGSZ201901025
  • 页数:13
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:224-236
摘要
内重整(IR)和外重整(ER)是固体氧化物燃料电池(SOFC)以天然气(NG)为燃料时的两种工作方式,不同重整方式下的电池性能、效率也不尽相同。借助有限元分析软件COMSOL Multiphysics?5.2,以天然气为燃料,建立了电池组成为Ni-YSZ//YSZ//LSCF-GDC的ER-SOFC和IR-SOFC两种三维单电池模型。模拟结果表明:相同条件下,IR-SOFC具有比ER-SOFC更高的功率密度、燃料利用率和能量利用率;阳极重整反应主要发生在靠近燃料入口的区域内;H_2和CO含量在IR-SOFC中先升高后降低,在ER-SOFC中则一直降低;IR-SOFC的温度变化更剧烈,燃料入口处温度梯度最大;越靠近集流体的区域,电解质表面的离子电流密度越大;ER-SOFC阳极不会发生热力学上的积炭现象,对于IR-SOFC,CH4热分解反应是整个阳极发生积炭的主要原因,其在燃料入口处的积炭活性高达270。
        Internal reforming(IR) and external reforming(ER) are two modes of operation when solid oxide fuel cells(SOFCs) are fueled by natural gas(NG). The performance and efficiency of batteries in different reforming modes are also different. 3D unit cell of ER-SOFC and IR-SOFC model fueled NG was designed which consist ofNi-YSZ//YSZ//LSCF-GDC based on multi-physics coupling software COMSOL Multiphysics?5.2. The simulationresults show that: the power density, fuel utilization and energy utilization of IR-SOFC are higher than ER-SOFC;methane steam reforming occurs mainly in the regions near fuel inlet of anode side; different from the reduction ofconcentration of H_2 and CO in ER-SOFC, the concentration of H_2 and CO rises first and then decreases in IR-SOFC; the temperature of IR-SOFC change dramatically more than ER-SOFC and the temperature gradient of IR-SOFC is highest at the anode inlet area; more closer of distance near the current collector, more higher ion currentdensity on the surface between cathode and electrolyte; carbon deposition do not happen in ER-SOFC at anodeside, whereas it take place as a result of CH_4 thermal decomposition reaction in IR-SOFC which carbon activity wasmore than 270.
引文
[1] Sharma M R N, Dasappa S. Solid oxide fuel cell operating with biomass derived producer gas:status and challenges[J].Renewable and Sustainable Energy Reviews, 2016, 60:450-463.
    [2] Song C S. Fuel processing for low-temperature and high temperature fuel cells:challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today,2002, 77(1/2):17-49.
    [3] Wachsman E D, Lee K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058):935-939.
    [4] Authayanun S, Pornjarungsak T, Prukpraipadung T, et al. SOFC running on steam reforming of biogas:external and internal reforming[C]//Varbanov P S. Pres2016:19th International Conference on Process Integration, Modeling and Optimization for Energy Savings and Pollution Reduction. Milano:Aidic Servizi Srl, 2016:361-366.
    [5] Liese E A, Gemmen R S. Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2005, 127(1):86-90.
    [6] Arpino F, Massarotti N. Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells[J]. Energy, 2009, 34(12):2033-2041.
    [7] Jeon D H. A comprehensive CFD model of anode-supported solid oxide fuel cells[J]. Electrochimica Acta, 2009, 54(10):2727-2736.
    [8] Lee S, Kim H, Yoon K J, et al. The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by threedimensional numerical simulations[J]. International Journal of Heat and Mass Transfer, 2016, 97:77-93.
    [9] Andersson M, Paradis H, Yuan J, et al. Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation[J].Electrochimica Acta, 2013, 109:881-893.
    [10] Ramirez-Minguela J, Mendoza-Miranda J, Rodriguez-Mu?oz J, et al. Entropy generation analysis of a SOFC by CFD:influence of electrochemical model and its parameters[J]. Thermal Science,2017, 22:127.
    [11] Iibas M, Kumuk B. Numerical modelling of a cathode-supported solid oxide fuel cell(SOFC)in comparison with an electrolytesupported model[J]. Journal of the Energy Institute, 2018. doi:10.1016/j.joei.2018.03.004.
    [12] Khazaee I, Rava A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J].Energy, 2017, 119:235-244.
    [13] Andersson M, Yuan J, Sunden B. SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants[J].Journal of Power Sources, 2013, 232:42-54.
    [14] Razbani O, Assadi M, Andersson M. Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas[J]. International Journal of Hydrogen Energy, 2013, 38(24):10068-10080.
    [15]于建国,王玉璋,翁史烈.煤气组分对固体氧化物燃料电池碳沉积的影响[J].无机材料学报, 2011, 26(11):1129-1135.Yu J G, Wang Y Z, Weng S L. Effects of syngas components on the carbon formation in planar solid oxide fuel cell[J]. Journal of Inorganic Materials, 2011, 26(11):1129-1135.
    [16] Andreassi L, Toro C, Ubertini S. Modeling carbon monoxide direct oxidation in solid oxide fuel cells[J]. Journal of Fuel Cell Science and Technology, 2009, 6(2):021307-1-021307-15.
    [17] Ong K M, Lee W Y, Hanna J, et al. Isolating the impact of CO concentration in syngas mixtures on SOFC performance via internal reforming and direct oxidation[J]. International Journal of Hydrogen Energy, 2016, 41(21):9035-9047.
    [18] Alzate-Restrepo V, Hill J M. Carbon deposition on Ni/YSZ anodes exposed to CO/H2feeds[J]. Journal of Power Sources,2010, 195(5):1344-1351.
    [19] Janardhanan V M, Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming:coupled interactions of transport,heterogeneous catalysis and electrochemical processes[J]. Journal of Power Sources, 2006, 162(2):1192-1202.
    [20]杨超,杨国刚,岳丹婷,等. IT-SOFC阳极表面催化反应机理与传递过程的数值模拟与分析[J].化工学报, 2013, 64(6):2208-2218.Yang C, Yang G G, Yue D T, et al. CFD analysis for catalytic reactions and transport processes in anodes of IT-SOFC[J]. CIESC Journal, 2013, 64(6):2208-2218.
    [21]杨国刚,吕欣荣,岳丹婷,等. SOFC内部重整反应与电化学反应耦合机理[J].化工学报, 2008, 59(4):1008-1015.Yang G G, LüX R, Yue D T, et al. Coupling mechanism of internal reforming and electrochemical reaction in SOFC[J].Journal of Chemical Industry and Engineering(China), 2008, 59(4):1008-1015.
    [22] Nikooyeh K, Jeje A A, Hill J M. 3D modeling of anode-supported planar SOFC with internal reforming of methane[J]. Journal of Power Sources, 2007, 171(2):601-609.
    [23] Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell(Ⅰ):Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1/2):120-136.
    [24] Nerat M, Juri?i??. A comprehensive 3-D modeling of a single planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(5):3613-3627.
    [25] Hosseini S, Vijay P, Ahmed K, et al. Dynamic tank in series modeling of direct internal reforming SOFC[J]. International Journal of Energy Research, 2017, 41(11):1563-1578.
    [26] Tran D L, Tran Q T, Sakamoto M, et al. Modelling of CH4multiple-reforming within the Ni-YSZ anode of a solid oxide fuel cell[J]. Journal of Power Sources, 2017, 359:507-519.
    [27] Schluckner C, Suboti?V, Lawlor V, et al. Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat(PartⅡ):Detailed reforming chemistry and carbon deposition analysis[J]. International Journal of Hydrogen Energy, 2015, 40(34):10943-10959.
    [28] Xu H, Chen B, Zhang H, et al. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction[J]. Journal of Power Sources, 2018, 382:135-143.
    [29] Nagel F P, Schildhauer T J, Biollaz S M A, et al. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases—a sensitivity analysis[J]. Journal of Power Sources, 2008, 184(1):129-142.
    [30] Chatrattanawet N, Dang S, Authayanun S, et al. Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches[J]. Energy, 2018, 146:131-140.
    [31] Suwanwarangkul R, Croiset E, Entchev E, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel[J]. Journal of Power Sources, 2006, 161(1):308-322.
    [32] Nerat M. Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations[J]. Energy, 2017, 138:728-738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700