用户名: 密码: 验证码:
微流控-超材料集成多带太赫兹传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metamaterial-Based Terahertz Multi-Band Sensors Integrated with Microfluidic Channels
  • 作者:张赟佳 ; 王少飞 ; 钟高超 ; 韩森 ; 王培 ; 银珊
  • 英文作者:Zhang Yunjia;Wang Shaofei;Zhong Gaochao;Han Sen;Wang Pei;Yin Shan;School of Electrical Engineering and Automation, Guilin University of Electronic Technology;Key Laboratory of Complex System Optimization and Big Data Processing of Guangxi Colleges,Yulin Normal University;Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology;
  • 关键词:太赫兹 ; 超材料 ; 微流控 ; 传感器
  • 英文关键词:terahertz;;metamaterials;;microfluidic channels;;sensors
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:桂林电子科技大学电子工程与自动化学院;玉林师范学院广西高校复杂系统优化与大数据处理重点实验室;桂林电子科技大学广西光电信息处理重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.510
  • 基金:广西自然科学基金(2017GXNSFBA198116);; 广西高校复杂系统优化与大数据处理重点实验室开放课题(2017CSOBDP0203);; 广西光电信息处理重点实验室基金(GD18101);; 广西高校大学生创新创业训练计划(201810595204)
  • 语种:中文;
  • 页:JJZZ201906038
  • 页数:7
  • CN:06
  • ISSN:31-1339/TN
  • 分类号:337-343
摘要
设计了一种新型的微流控-超材料集成多带太赫兹传感器。模拟了该传感器在探测不同摩尔分数乙醇水溶液时的反射谱。结果表明,随着乙醇摩尔分数的升高,反射谱中四个共振峰的反射率逐渐减小,而峰位逐渐蓝移。分析了传感器共振峰的频率和反射率与乙醇摩尔分数的定量关系,并将其应用于乙醇水溶液的摩尔分数检测中。利用高频处的三个共振峰进行摩尔分数预测,其预测结果误差小于1%。以上结果有助于促进太赫兹时域光谱技术在快速、微量和实时的物质鉴定和生物传感中的应用。
        In this study, we designed a metamaterial-based terahertz multi-band sensor integrated with microfluidic channels. We simulated the reflection spectra of the sensor during the detection of ethanol-water mixtures containing different concentrations of ethanol. The simulation results show that an increase in the ethanol concentration correlates with a decrease in the reflectivity at the resonant dips and a blue shift of the resonant frequency. We analyzed the quantitative relationship between resonant frequency or reflectivity of the sensor with ethanol concentration, which is in turn used for the prediction of the ethanol concentration in an ethanol-water mixture. Three resonance dips are used for predicting the ethanol concentration and the predicted errors are smaller than 1%. The above results demonstrate the utility of the terahertz time-domain spectroscopic technique in the rapid, real-time, and infinitesimal material identification and bio-sensing.
引文
[1] Pendry J B.Negative refraction[J].Contemporary Physics,2004,45(3):191-202.
    [2] Withayachumnankul W,Abbott D.Metamaterials in the terahertz regime[J].IEEE Photonics Journal,2009,1(2):99-118.
    [3] Wang Y R,Liang L J,Yang M S,et al.Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J].Laser & Optoelectronics Progress,2019,56(4):041603.王娅茹,梁兰菊,杨茂生,等.一种光控的电磁诱导透明太赫兹超材料[J].激光与光电子学进展,2019,56(4):041603.
    [4] Wu X J,Quan B G,Pan X C,et al.Alkanethiol-functionalized terahertz metamaterial as label-free,highly-sensitive and specific biosensor[J].Biosensors and Bioelectronics,2013,42:626-631.
    [5] Xie L J,Gao W L,Shu J,et al.Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics[J].Scientific Reports,2015,5:8671.
    [6] Yang A K,Li Z Y,Knudson M P,et al.Unidirectional lasing from template-stripped two-dimensional plasmonic crystals[J].ACS Nano,2015,9(12):11582-11588.
    [7] Hu F R,Guo E Z,Xu X,et al.Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor[J].Optics Communications,2017,388:62-67.
    [8] Chen M,Singh L,Xu N N,et al.Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials[J].Optics Express,2017,25(13):14089-14097.
    [9] Han X,Su B,Zhang C L.A kind of terahertz microfluidic chip[J].Journal of Terahertz Science and Electronic Information Technology,2015,13(4):536-539.韩雪,苏波,张存林.一种太赫兹微流控芯片[J].太赫兹科学与电子信息学报,2015,13(4):536-539.
    [10] Salim A,Lim S.Review of recent metamaterial microfluidic sensors[J].Sensors,2018,18(1):232.
    [11] Huang S G,Jin X Y,Lin R Z,et al.Microfluidic chip based nucleic acid analyzer and its application in precision medicine[J].Chinese Journal of Lasers,2018,45(3):0307002.黄世光,靳翔宇,林荣赞,等.微流控芯片核酸分析系统及其精准医学应用[J].中国激光,2018,45(3):0307002 .
    [12] Liu L,Jiang Z G,Rahman S,et al.Quasi-optical terahertz microfluidic devices for chemical sensing and imaging[J].Micromachines,2016,7(5):75.
    [13] Tang Q,Liang M,Lu Y,et al.Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications[J].Sensors,2016,16(4):476.
    [14] Park S J,Yoon S A N,Ahn Y H.Dielectric constant measurements of thin films and liquids using terahertz metamaterials[J].RSC Advances,2016,6(73):69381-69386.
    [15] Hu X,Xu G Q,Wen L,et al.Metamaterial absorber integrated microfluidic terahertz sensors[J].Laser & Photonics Reviews,2016,10(6):962-969.
    [16] Liang L,Hu X,Wen L,et al.Unity integration of grating slot waveguide and microfluid for terahertz sensing[J].Laser & Photonics Reviews,2018,12(11):1800078.
    [17] Geng Z X,Zhang X,Fan Z Y,et al.A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J].Scientific Reports,2017,7:16378.
    [18] Shih K,Pitchappa P,Jin L,et al.Nanofluidic terahertz metasensor for sensing in aqueous environment[J].Applied Physics Letters,2018,113(7):071105.
    [19] CST microwave studio[OL].[2019-01-28].https:∥www.cst.com/products/cstmws.
    [20] Srivastava Y K,Manjappa M,Cong L Q,et al.Ultrahigh-Q Fano resonances in terahertz metasurfaces:strong influence of metallic conductivity at extremely low asymmetry[J].Advanced Optical Materials,2016,4(3):457-463.
    [21] Lu X C,Han J G,Zhang W L.Localized plasmonic properties of subwavelength geometries resonating at terahertz frequencies[J].IEEE Journal of Selected Topics in Quantum Electronics,2011,17(1):119-129.
    [22] Kindt J T,Schmuttenmaer C A.Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):10373-10379.
    [23] Swithenbank M,Burnett A D,Russell C,et al.On-chip terahertz-frequency measurements of liquids[J].Analytical Chemistry,2017,89(15):7981-7987.
    [24] Jepsen P U,M?ller U,Merbold H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy[J].Optics Express,2007,15(22):14717-14737.
    [25] Fang R C.Solid spectroscopy[M].Hefei:University of Science and Technology of China Press,2001:1-16.方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2001:1-16.
    [26] Yin S,Hu F R,Chen X Y,et al.Ruler equation for precisely tailoring the resonance frequency of terahertz U-shaped metamaterials[J].Journal of Optics,2019,21(2):025101.
    [27] Todorov Y,Andrews A M,Sagnes I,et al.Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies[J].Physical Review Letters,2009,102(18):186402.
    [28] Wang H F,Wang T,Liu W,et al.Progress of the research of certified reference materials for water content of liquid and solid[J].Metrology & Measurement Technology,2017,37(1):9-13.王海峰,汪婷,刘卫,等.系列液体和固体水分标准物质的研制[J].计测技术,2017,37(1):9-13.
    [29] Chen D D,Shi Y Y,Zhu Y,et al.Improvement of the method of detecting ethanol concentration in wine[J].Fujian Analysis & Testing,2017,26(6):31-33.陈丹丹,施炎炎,朱云,等.酒中乙醇浓度国标检测方法的改进[J].福建分析测试,2017,26(6):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700