用户名: 密码: 验证码:
温度效应对壁板动响应及疲劳寿命影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Temperature Effect on Dynamic Response and Fatigue Life Of Panel
  • 作者:王晨 ; 燕群 ; 陈海波 ; 黄文超
  • 英文作者:WANG Chen;YAN Qun;CHEN Hai-bo;HUANG Wen-chao;Aircraft Strength Research Institute of China;University of Science and Technology of China;
  • 关键词:温度效应 ; 飞行器壁板 ; 动响应 ; 应力功率谱 ; 疲劳寿命
  • 英文关键词:Temperature effect;;Aircraft panel;;Dynamic response;;Stress power spectrum;;Fatigue life
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:中国飞机强度研究所;中国科学技术大学;
  • 出版日期:2019-06-15
  • 出版单位:计算机仿真
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(11772322)
  • 语种:中文;
  • 页:JSJZ201906014
  • 页数:5
  • CN:06
  • ISSN:11-3724/TP
  • 分类号:74-78
摘要
飞行器壁板在热振环境下承载能力会明显下降甚至出现疲劳破坏。针对上述问题,采用有限元法建立铝合金壁板热振分析模型,结合频域疲劳寿命预报方法研究材料热物性参数、热应力对壁板动响应及疲劳寿命的影响规律。研究结果表明,随着温度升高,热应力会导致壁板危险点应力功率谱峰值及均方根应力明显增大,而弹性模量随温度变化对应力功率谱峰值及均方根应力影响很小。壁板动响应随温度变化对疲劳寿命的影响主要来自于热应力,但对壁板疲劳寿命的贡献量很小。温度效应对铝合金疲劳性能的影响是决定壁板疲劳寿命的主要因素。
        In the thermal vibration environment, the bearing capacity of the aircraft panel will decrease significantly and even fatigue damage will occur. In the paper, the finite element method was used to establish the thermal vibration analysis modal of aluminum alloy panel, and the influences law of material thermo-physical parameters and thermal stress on the dynamic response and fatigue life of the panel were studied by combining with frequency domain fatigue life method. The results show that with the increase of temperature, the thermal stress causes the peak of stress power spectrum and mean square root stress of critical point of panel to increase obviously. However, the elastic modulus has little effect on the peak of stress power spectrum and mean square root stress. The influence of dynamic response of the panel on fatigue life is mainly from thermal stress, but the contribution to fatigue life is very small. The temperature effect influence on the fatigue properties of aluminum alloy is the main factor determining the fatigue life of the panel.
引文
[1] 郭静,等.热噪声复合环境下飞行器结构动响应预示技术研究进展[J].强度与环境,2014,(6):1-10.
    [2] R Yadav,U Guven.Aerodynamic heating of a hypersonic projectile with forward-facing ellipsoid cavity at nose[J].Journal of Spacecraft and Rockets,2014,52(1):157-165.
    [3] 谢久林,等.航天器声振动力学环境响应分析[J].航天器环境工程,2006,23(2):83-89.
    [4] J Avsec,M Oblak.Thermal vibrational analysis for simply supported beam and clamped beam[J].Journal of Sound and Vibration,2007,308(3):514-525.
    [5] P Jeyaraj,C Padmanabhan,N Ganesan.Vibration and acoustic response of an isotropic platein a thermal environment.Journal of Vibration and Acoustics,2008,130,(5):051005.
    [6] P Jeyaraj,N Ganesan,C Padmanabhan.Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment[J].Journal of Sound and Vibration,2009,320(1):322–338.
    [7] R D Blevins,et al.Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure[R].Goodrich (bf) aerospace chula vista ca aerostructures,2009.
    [8] 吴振强,等.热环境对飞行器壁板结构动特性的影响[J].航空学报,2013,34(2):334-342.
    [9] 杨雄伟,李跃明,闫桂荣.考虑材料物性热效应飞行器声振耦合动态特性分析[J].固体力学学报,2010,31:134-142.
    [10] 杨雄伟,李跃明,耿谦.基于混合FE-SEA 法的高温环境飞行器宽频声振特性分析[J].航空学报,2011,32(10):1851-1859.
    [11] 耿谦,李跃明,杨雄伟.热应力作用下结构声-振耦合响应数值分析[J].计算力学学报,2012,29(1):99-104.
    [12] 鲍冬冬,沙云东,蒋娜娜.复合材料薄壁结构在热声载荷作用下的非线性动态响应特性分析[J].沈阳航空航天大学学报,2013,30(1):39-42,65.
    [13] 沙云东,等.热声载荷作用下薄壁结构的非线性响应特性[J].航空学报,2013,34(6):1336-1346.
    [14] 周亚东,等.变温条件下热结构的声疲劳寿命评估[J].工程力学,2015,32(10):220-225.
    [15] P H Wirsching,M C Light.Fatigue under wide band random stresses[J].Journal of the Structural Division,1980,106(7):1593-1607.
    [16] T Dirlik.Application of computers in fatigue analysis[D].University of Warwick,1985.
    [17] 叶序彬,等.温度对7N01-T4铝合金疲劳行为的影响[J].失效分析与预防,2014,(6):347-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700