用户名: 密码: 验证码:
化学反应体系中电磁脉冲的频谱变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectrum changes of electromagnetic pluses in chemical reactions
  • 作者:刘兴鹏 ; 严丹丹
  • 英文作者:LIU Xingpeng;YAN DANDan;College of Network and Communication Engineering, Chengdu Technological University;
  • 关键词:化学反应 ; 简单极性分子反应 ; 频谱变化
  • 英文关键词:chemical reactions;;simple polar-molecule reactions;;spectrum changes
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:成都工业学院网络与通信工程学院;
  • 出版日期:2019-03-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:成都工业学院人才科研启动基金项目(2017RC014)
  • 语种:中文;
  • 页:HGSZ2019S1022
  • 页数:5
  • CN:S1
  • ISSN:11-1946/TQ
  • 分类号:183-187
摘要
微波辅助化学反应引起人们的大量关注,但非均匀加热等问题严重限制了微波在化学工业中的广泛应用。为了解决这些问题,就需要研究化学反应体系中电磁波的传播规律。化学反应体系作为一种典型的时变非平衡系统,其介电特性随着化学反应进行而变化,而介电特性变化将影响反应体系内的电磁波频率。以简单极性分子反应的极化特性表征为基础,通过数值计算不同反应速率的反应体系中电磁脉冲的传播,揭示了反应体系时变和色散的电磁特性对电磁脉冲频谱的影响。对于较慢的化学反应,可以忽略反应体系的时变特性,反应体系的色散特性引起电磁脉冲频谱的变化;对于较快的化学反应,反应体系的时变和色散特性同时引起电磁脉冲频谱的变化。
        Microwave-assisted chemical reactions have been attractive. However, the problems of inhomogeneous heating have been preventing the further application of microwaves in chemical engineering. In order to solve these problems, the characteristics of electromagnetic wave propagation in chemical reactions need to be investigated. As a typical time-varying and non-equilibrium system, the dielectric properties of chemical reactions change during chemical reactions. Moreover, the frequency of the electromagnetic waves in the reactions can be influent by the variation of dielectric properties. In this paper, based on the polarization characteristics of the simple polarmolecule reactions, the propagation of electromagnetic pulses in the reactions with different reaction rates is simulated to disclose the effects of the time-varying and dispersive characteristics on the spectrum of electromagnetic pluses. For slow reactions, the time-varying characteristics are negligible, and the dispersive characteristics leads to the spectrum variation. For fast reactions, the time-varying and dispersive characteristics make the spectrum changes of electromagnetic pluses.
引文
[1] Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letter, 1986, 27(3):279-282.
    [2] Giguere R J, Bray T L, Duncan S M. Application of commercial microwave ovens to organic synthesis[J]. Tetrahedron Letter,1986, 27(41):4945-4948.
    [3] Cecilia R, Kunz U, Turek T. Possibilities of process intensification using microwaves applied to catalytic microreactors[J]. Chemical Engineering and Processing:Process Intensification, 2007, 46(9):870-881.
    [4]樊兴君,尤进茂,谭干祖,等.微波促进有机化学反应研究进展[J].化学进展, 1998, 10(3):285-295.Fang X J, You J M, Tan G Z, et al. Progress in microwave organic reaction enhancement chemistry[J]. Progress in Chemistry, 1998,10(3):285-295.
    [5]李永红,李跃明,沈玲.微波促进有机反应原理及微波有机合成仪[J].化工技术与开发, 2006, 35(3):14-16.Li Y H, Li Y M, Shen L. The principle of microwave-organic reaction enhancement chemistry and equipment of microwave organic synthesis[J]. Technology&Development of Chemical Industry, 2006, 35(3):14-16.
    [6] Ku H S, Siores E, Taube A, et al. Productivity improvement through the use of industrial microwave technologies[J].Computers&Industrial Engineering, 2002, 42(2/3/4):281-290.
    [7] Zhang X, Hayward D O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems[J]. Inorganica Chimica Acta, 2006, 359(11):3421-3433.
    [8] Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review[J].Resources, Conservation and Recycling, 2002, 34(2):75-90.
    [9] Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011, 31(16):3255-3261.
    [10] Kappe C O. Microwave dielectric heating in synthetic organic chemistry[J]. Chemical Society Reviews, 2008, 37(6):1127-1139.
    [11] Zhang X, Hayward D O, Mingos D M P. Effects of microwave dielectric heating on heterogeneous catalysis[J]. Catalysis Letters,2003, 88(1/2):33-38.
    [12] Lehmann H, LaVecchia L. Scale-up of organic reactions in a pharmaceutical kilo-lab using a commercial microwave reactor[J].Organic Process Research&Development, 2010, 14(3):650-656.
    [13] Roussy G, Bennani A, Thiebaut J M. Temperature runaway of microwave irradiated materials[J]. Journal of Applied Physics,1987, 62(4):1167-1170.
    [14] Vadivambal R, Jayas D S. Non-uniform temperature distribution during microwave heating of food materials—a review[J]. Food and Bioprocess Technology, 2010, 3(2):161-171.
    [15]后藤廉平.新编基础物理化学[M].北京:高等教育出版社,1987:16-18.HOU T L P. New Basic Physical Chemisty[M]. Beijing:Higher Education Press, 1987:16-18.
    [16]杨晓庆,黄卡玛,微波与化学反应相互作用中的关键问题讨论[J].电波科学学报, 2006, 21(5):802-809.Yang X Q, Huang K M. Investigation of key problems of interaction between microwave and chemical reaction[J]. Chinese Journal of Radio Science, 2006, 21(5):802-809.
    [17]杨晓庆,微波与化学反应体系相互作用过程中的特殊效应研究[D].成都:四川大学, 2006.Yang X Q, Study on specific effect in the interaction between microwave and chemical reaction[D]. Chengdu:Sichuan University, 2006.
    [18] Coffey W T, Paranjape B V. Dielectric and Kerr effect relaxation in alternating electric fields[C]//Proceedings of the Royal Irish Academy. Section A:Mathematical and Physical Sciences.Dublin:Royal Irish Academy, 1978:17-25.
    [19] Scheider W. Dielectric relaxation of molecules with fluctuating dipole moment[J]. Biophysical Journal, 1965, 5(5):617-628.
    [20] Schwarz G. Dielectric relaxation due to chemical rate processes[J].The Journal of Physical Chemistry, 1967, 71(12):4021-4030.
    [21] Czerlinski G H. Chemical Relaxation[M]. New York:Dekker,1966.
    [22] Sekkat Z, Wood J, Knoll W. Reorientation mechanism of azobenzenes within the trans. fwdarw. cis photoisomerization[J].The Journal of Physical Chemistry, 1995, 99(47):17226-17234.
    [23] Huang K, Hong T. Dielectric polarization and electric displacement in polar-molecule reactions[J]. The Journal of Physical Chemistry A, 2015, 119(33):8898-8902.
    [24] Melrose D B, McPhedran R C. Electromagnetic Processes in Dispersive Media[M]. Oxford city:Cambridge University Press,2005.
    [25] Landau L D, Bell J S, Kearsley M J, et al. Electrodynamics of Continuous Media[M]. Amsterdam:Elsevier, 1984.
    [26] Morgenthaler F R. Velocity modulation of electromagnetic waves[J]. IRE Transactions on Microwave Theory and Techniques,1958, 6(2):167-172.
    [27] Berezhiani V I, Mahajan S M, Miklaszewski R. Frequency upconversion and trapping of ultrashort laser pulses in semiconductor plasmas[J]. Physical Review A, 1999, 59(1):859.
    [28] Kalluri D K. Electromagnetics of Time Varying Complex Media:Frequency and Polarization Transformers[M]. New York:CRC Press, 2010.
    [29] Bakunov M I, Grachev I S. Energetics of electromagnetic wave transformation in a time-varying magnetoplasma medium[J].Physical Review E, 2002, 65(3):036405.
    [30] Chen B, Gao B, Ge C, et al. Accurate solution and characteristics for electromagnetic wave propagation in time-varying media[J].Modern Applied Science, 2009, 3(10):68.
    [31] Nerukh A, Sakhnenko N, Benson T, et al. Non-stationary Electromagnetics[M]. New York:CRC Press, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700