用户名: 密码: 验证码:
飞行器薄壁结构热噪声响应及动强度研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response and Strength of Aerocraft Thin-Panel under Thermal-Acoustic Loads
  • 作者:张正平
  • 英文作者:ZHANG Zheng-ping;Science and Technology on Reliability and Environment Engineering Laboratory,Beijing Institute of Structure and Environment Engineering;
  • 关键词:热模态 ; 热噪声 ; 动强度 ; 仿真分析 ; 试验技术
  • 英文关键词:thermal modal;;thermal acoustic;;dynamic strength;;simulation;;test
  • 中文刊名:QDHJ
  • 英文刊名:Structure & Environment Engineering
  • 机构:北京强度环境研究所可靠性与环境工程技术重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:强度与环境
  • 年:2019
  • 期:v.46;No.217
  • 基金:国家自然科学基金(11502024)
  • 语种:中文;
  • 页:QDHJ201901001
  • 页数:7
  • CN:01
  • ISSN:11-1773/V
  • 分类号:3-9
摘要
飞行器在大气层内长时间高马赫数飞行会面临极端严酷的热/振动/噪声等力热复合载荷环境,对传统单一环境下的结构动力学、强度分析与试验技术提出了挑战,本文分析了国内外在该领域进展及存在的技术难题,围绕工程及专业技术发展需求,针对飞行器薄壁结构在高温环境下的结构动特性演变规律、热噪声动态响应分析与试验技术、热噪声载荷下结构寿命预示与动强度评估等方面开展研究,对取得的最新研究进展进行了科学总结,提出了未来的发展建议,可为高超声速飞行器、可重复使用运载器等关键结构设计与试验考核提供技术支撑。
        For high speed aerocra?t flying in the atmosphere with long time, it will encounter extreme coupled thermal and acoustic loads. Compared with the traditional single load, the combined loads are more complicated and bring some challenges to structural dynamic, strength analysis and test. So far there are still several technology gaps needing to be researched. In this paper,the analysis and experiment for the mode, the dynamic response and strength are reviewed firstly. And then, the research progress in Beijing Institute of Structure and Environment Engineering are presented. The research includes the theory, the numerical method and the test. Both the thermal modal and thermal-acoustic analysis method and test facility are established. Finally, the suggestions for the future development are given. This work can support the design and development for the future high speed vehicle.
引文
[1]中国科学院.中国学科发展战略?新型飞行器中的关键力学问题[M].北京:科学出版社,2018.
    [2]于登云.新型航天器发展对力学学科的挑战[J].科学通报[J].2015,12:1085-1094.[YU Deng-Yun.Mechanical challenges in advanced spacecraft development[J].Chinese Science Bulletin,2015,12:1085-1094.]
    [3]Blevins D Robert,Bofilios Dimitri,Holehouse Ian.Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure[R].Goodrich Aerostructures Group report.AFRL-RB-WP-TR-2009-3139,2009.
    [4]Swanson D Andrew.Coghlan C Sean,Pratt M David,et al.Hypersonic vehicle thermal test challenges[R].AIAA-2007-1670,2007.
    [5]Cheng H,Li H B,Zhang W,et al.Effects of radiation heating on modal characteristics of panel structures[J].Journal of Spacecraft and Rockets,2015,52(4):1228-1235.
    [6]张伟,张正平,李海波,等.高超声速飞行器结构热试验技术进展[J].强度与环境,2011,38(1):1-8.[Zhang Wei,Zhang Zheng-ping Li Hai-bo et al.Progress on thermal test technique of hypersonic vehicle structures[J].Structure&Environment Engineering,2011,38(1):1-8.]
    [7]张立同.纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计[M].北京:化学工业出版社,2009:32-41.
    [8]Tzong G,Jacobs R,Liguore S.Air Vehicles Integration and Technology Research(AVIATR)Task Order 0015:Predictive Capability for Hypersonic Structural Response and Life Prediction,Phase1-Identification of Knowledge Gaps,Volume 1-Nonproprietary Version[R].Air Force Research Laboratory Report,AFRL-RB-WP-TR-2010-3068,V1,2010.
    [9]Quiroz R,Embler J,Jacobs R,et al.Air vehicles integration and technology research(AVIATR)task order 0023:predictive capability for hypersonic structural response and life prediction,phase 2detailed design of hypersonic cruise vehicle hot-structure[R].Lockheed Martin Aeronautics Company Report,AFRL-RQ-WP-TR-2012-0280,2012.
    [10]Vosteen L F,Fuller K E.Behavior of a cantilever plate under rapid heating conditions[R].NACA RM L55E20,1955.
    [11]Richard A,Pride L,Ross L.Some effects of rapid heating on box beams[C].NACA conference on aircraft loads,flutter and structures,1955:489-495.
    [12]Mcintyre K L.Vibration testing during high heat rates[R].RTD-TDR-63-4197,1963.
    [13]Vosteen L F,Mc Withey R R,Thomson R G.Effect of transient heating on vibration frequencies of some simple wing structures[R].NACA technical note 4054,1957.
    [14]Budiansky B,Mayers J.Influence of aerodynamic heating on the effective torsional stiffness of thin wings[J].Journals aerospace science,1956,23(12):1081-1093.
    [15]Mc Withey R R,Vosteen L F.Effects of transient heating on the vibration frequencies of a prototype of the X-15 wing[R].Technical note D-362,1960.
    [16]Kehoe M W,Snyder H T.Thermoelastic vibration test techniques[R].NASA technical memorandum 101742,1991.
    [17]Snyder H T,Kehoe M W.Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles[R].NASA Technical memorandum 4274,1991.
    [18]Kehoe M W,Deaton V C.Correlation of analytical and experimental hot structure vibration results[R].NASA Technical memorandum 104269,1993.
    [19]Spivey N D.High-temperature modal survey of a hot-structure control surface[C].The 27th International congress of the aeronautical sciences.Nice,France,2010.
    [20]Brown A M.Temperature-dependent modal test analysis correlation of X-34 FASTRAC composite rocket nozzle[J].Journal of propulsion and power.2002,18(2):284-288.
    [21]Wu D,Wang Y,Shang L,et al.Experimental and computational investigations of thermal modal parameters for a plate-structure under 1200°C high temperature environment[J].Measurement,2016,94:80-91.
    [22]吴大方,商兰,高镇同,等.1700℃高温、有氧及时变环境下隔热性能试验研究[J].宇航学报,2015,36(9):1083-1092.[Wu Da-fang,Shang Lan,Gao Zhen-tong,et al.Experimental research on thermal-insulation performance under high temperature/oxidation and time-varying environment up to 1700°C[J].Journal of Astronautics,2015,36(9):1083-1092.]
    [23]Zhang X L,Yu K P,Bai Y H,Zhao R.Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J].Composite Structures,2015,131:99-106.
    [24]苏华昌,骞永博,李增文,等.舵面热模态试验技术研究[J].强度与环境,2011,38(5):18-24.[Su Hua-chang,Qian Yong-bo,Li Zeng-wen,et al.The study of rudder thermo-modal test technique[J].Structure&Environment Engineering,2011,38(5):18-24.]
    [25]刘浩,李晓东,杨文岐,等.考虑气动加热的翼面结构热模态试验方法研究[J].振动与冲击,2015,34(13):101-108.[Liu Hao,Li Xiao-dong,Yang Wen-qi.Thermal modal test method for a wing structure considering aerodynamic heating[J].Journal of Vibration and Shock,2015,34(13):101-108.]
    [26]李晓东,杨文岐,刘浩.基于纯随机激励的热模态试验技术研究,强度与环境,2015,42(2):52-56.[Li Xiao-dong,Yang Wen-qi,Liu Hao.The study of thermo-modal test technique based on true-random excitation[J].Structure&Environment Engineering,2015,42(2):52-56.]
    [27]谭光辉,李秋彦,邓俊.热环境下结构固有振动特性试验及分析[J].航空学报,2016,37(S1):S32-S37.[Tan Guang-hui,Li Qiu-yan,Deng Jun.Test and analysis of natural modal characteristics of a wing model with thermal effect[J].Acta Aeronautica et Astronautica Sinica,2016,37(S1):S32-S37.]
    [28]Rucker E C,Grandle E R.Thermo acoustic fatigue testing facility for space shuttle thermal protection system fatigue at elevated temperatures[R].ASTM STP 520,1973.
    [29]Leatherwood J D,Clevenson S A,Powell C A,et al.Acoustic testing of high-temperature panels[J].Journal of Aircraft,1992,29(6):1130-1136.
    [30]Bayerd?erfer G,Freyberg L.Thermoacoustic tests to qualify TPS-Design[C].ESA SP-386:591-596,1996.
    [31]Rizzi S.Experimental research activities in dynamic response and sonic fatigue of hypersonic vehicle structures at NASA Langley Research Center[R].AIAA-93-0383.
    [32]Croop H C,Camden M P,Wentz K R.Dynamic fatigue of carbon-carbon thermal protection systems[R].AIAA-96-1618-CP.
    [33]吴振强,任方,张伟,等.飞行器结构热噪声试验的研究进展[J].导弹与航天运载技术,2010(2):24-30.[Wu Zhen-qiang,Ren Fang,Zhang Wei.et al.Research advances in thermal-acoustic testing of aerocraft structures[J].Missiles and space vehicles,2010(2):24-30.]
    [34]邹学锋,郭定文,潘凯,等.综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J].航空学报,2018,39(12):222326.[Zou Xue-feng,Guo Ding-wen,Pan Kai,et al.Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J].Acta aeronautica et astronautica sinica,2018,39(12):222326.]
    [35]Li Xiang-yang,Yu Kai-ping.Han Jing-yong.et al.Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment[J].International Journal of Mechanical Sciences,2016,119:370-382.
    [36]Liu Liu,Lv Bingyang,He Tiren.The stochastic dynamic snap-through response of thermally buckled composite panels[J].Composite Structures,2015,131:344-355.
    [37]Zhou Ya-dong.Wu Shao-qing.Tan Zhi-yong.et al,Temperature-dependence of acoustic fatigue life for thermal protection structures[J].Theoretical&Applied Mechanics Letters,2014:.
    [38]Rizzi A Stephen,Turner L Travis.Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus[C].Structural Dynamics:Recent Advances,Proceedings of the 6th International Conference,1997.
    [39]Freyberg Lothar,Grillenbeck,New Acoustic Test Facility[C].Proc.4th International Symposium on Environmental Testing for Space Programs,2001.
    [40]胡君逸,李跃明,李海波,等.考虑热应力、热变形正交各向异性板的动特性及响应规律[J].工程力学,2018,35(8):218-229.[Hu jun-yi,Li yue-ming,Li haibo,et al.Research on vibration characteristic and dynamic response of response of orthotropic plate with thermal stress and deformation[J].Engineering mechanics,2018,35(8):218-229.]
    [41]李重岭,李跃明,李海波,等.考虑热效应复合材料典型壁板结构模态演变规律[J].复合材料学报,2018,35(4):222-231.[Li Chong-ling,Li Yue-ming,Li Hai-bo.Modal evolution of composite typical panel structure considering thermal effects[J].Acta Materiae Compositae Sinica,2018,35(4):222-231.]
    [42]王建民,原凯,张忠,等.力热载荷下的一般模态方程及热模态计算[J].强度与环境,2016,43(2):9-16.[Wang Jian-min,Yuan Kai,Zhang Zhong,et al.Generic control equation and thermal modal simulation for preload mode and thermal mode[J].Structure&Environment Engineering,2016,43(2):9-16.]
    [43]程昊,李海波,贾洲侠,等.C/SiC壁板结构热模态变化规律与试验研究[C].第十二届全国振动理论及应用学术会议,南宁,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700