用户名: 密码: 验证码:
阳极微生物的固定方式对微生物燃料电池性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of anodic microbial immobilization method on performance of microbial fuel cell
  • 作者:邢达杰
  • 英文作者:XING Dajie;School of Biological and Food Engineering, Tianjin Tianshi College;
  • 关键词:微生物燃料电池 ; 固定化 ; 导电水凝胶 ; 内阻 ; 阳极
  • 英文关键词:microbial fuel cell;;immobilization;;conductive hydrogel;;resistance;;anode
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:天津天狮学院食品工程学院;
  • 出版日期:2019-06-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.429
  • 基金:天津市高等学校科技发展基金资助项目(20140627)
  • 语种:中文;
  • 页:GNCL201906025
  • 页数:6
  • CN:06
  • ISSN:50-1099/TH
  • 分类号:150-155
摘要
研究了一种将微生物包埋在导电水凝胶中制备成微生物燃料电池(microbial fuel cell,MFC)阳极的新方法,该方法可以增加阳极上微生物的数量,并使多数微生物处于分散状态以利于代谢的扩散。该方法构建的阳极用在MFC中,显示了良好的效果。其最高功率密度和工作电压分别为0.243 W/m~2和0.350 V,比使用传统阳极的MFC分别高出89.843%和16.667%;其内阻则为263.780Ω,比使用传统阳极的MFC低78.973%。
        Abstract:A new method of preparing microbial fuel cell anode by embedding microorganisms in conductive hydrogel was studied.The method could change the population and distribution state of anodic microbial.The anode has been applied in MFC,and better results have been obtained.Its maximum power density and operating voltage(0.243 W/m2,0.350 V)was 89.843% and 16.667% higher than those of the MFC using anode prepared by absorbing method,respectively.While the former's internal resistance(263.780Ω)was 78.973%lower than the latter.This work may provide a novel anodic microbial enrichment method for improving the performance of MFC.
引文
[1]Wang H P,Jiang S C,Wang Y,et al.Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater[J].Bioresour Technol,2013,138(6):109-116.
    [2]Yang Y,Sun G,Xu M.Microbial fuel cells come of age[J].J Chem Tech Biot,2011,86(5):625-632.
    [3]Bergua M,Levy I,Casamitjana R,et al.Exoelectrogens in microbial fuel cells toward bioelectricity generation:a review[J].Int J Energ Res,2015,39(8):1048-1067.
    [4]Wang H M,Park J D,Ren Z Y J.Practical energy harvesting for microbial fuel cells:a review[J].Environ Sci Technol,2015,49(6):3267-3277.
    [5]Zhao F,Slade R C,Varcoe J R.Techniques for the study and development of microbial fuel cells:an electrochemical perspective[J].Chem Soc Rev,2009,38(7):1926-1939.
    [6]Logan B E,Regan J M.Microbial fuel cells-challenges and applications[J].Environ Sci Technol,2006,40(17):5172-5180.
    [7]Liu Z D,Li H R.Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell[J].Biochem Eng J,2007,36(3):209-214.
    [8]Kim B H,Chang I S,Gadd G M.Challenges in microbial fuel cell development and operation[J].Appl Microbiol Biot,2007,76(3):485-494.
    [9]Cheng K Y,Ho G,Cord-Ruwisch R.Affinity of microbial fuel cell biofilm for the anodic potential[J].Environ Sci Technol,2008,42(10):3828-3834.
    [10]Lu M,Qian Y,Huang L,et al.Improving the performance of microbial fuel cells through anode manipulation[J].Chempluschem,2015,80(8):1216-1225.
    [11]Wu X,Tong F,Song T,et al.Effect of zeolite-coated anode on the performance of microbial fuel cells[J].J Chem Tech Biot,2015,90(1):87-92.
    [12]Li S,Cheng C,Thomas A.Carbon-based microbial-fuelcell electrodes from conductive supports to active catalysts[J].Adv Mater,2016,29(8):1602547.
    [13]Schr9der U.Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J].Pccp,2007,9(21):2619-2629.
    [14]Wang Y,Zhao C,Sun D,et al.A graphene/poly(3,4-ethylenedioxythiophene)hybrid as an anode for high-performance microbial fuel cells[J].Chempluschem,2013,78(8):823-829.
    [15]Ghasemi M,Wan R W D,Hassan S H A,et al.Nanostructured carbon as electrode material in microbial fuel cells:A comprehensive review[J].J Alloys Compd,2013,580(32):245-255.
    [16]Jariwala D,Sangwan V K,Lauhon L J,et al.Carbon nanomaterials for electronics,optoelectronics,photovoltaics and sensing[J].Chem Soc Rev,2014,42(7):2824-2826.
    [17]Yang S,Bachman R E,Feng X,et al.Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion[J].Acc Chem Res,2013,46(1):116-128.
    [18]Rondeaugagn S,Morin J F.Preparation of carbon nanomaterials from molecular precursors[J].Chem Soc Rev,2014,43(1):85-98.
    [19]Badamshina E R,Gafurova M P,Estrin Y I.ChemInform abstract:modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes[J].Russ Chem Rev,2011,42(21):945-979.
    [20]Bartelmess J,Quinn S J,Giordani S.Carbon nanomaterials:multi-functional agents for biomedical fluorescence and Raman imaging[J].Chem Soc Rev,2014,44(14):4672-4698.
    [21]Zhao Y,Watanabe K,Nakamura R,et al.Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells[J].Chemistry,2010,16(17):4982-4985.
    [22]Zou L,Qiao Y,Wu Z Y,et al.Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells[J].Adv Eenergy Mater,2016,6(4):535-538.
    [23]Guo K,Prévoteau A,Patil S A.Engineering electrodes for microbial electrocatalysis[J].Curr Opin Biotech,2015,33(2):149-156.
    [24]Pan L,Yub G,Zhai D,et al.Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity[J].Pans,2012,109(24):9287-9292.
    [25]Lipsa R,Tudorachi N,Grigora爧V C,et al.Degradation of poly(vinyl alcohol)-graft-lactic acid copolymers by Trichotecium roseum fungus[J].J Appl Polym Sci,2014,132(14):41777-41779.
    [26]Park J S,Park J W,Ruckenstein E.On the viscoelastic properties of poly(vinyl alcohol)and chemically crosslinked poly(vinyl alcohol)[J].J Appl Polym Sci,2001,82(7):1816-1823.
    [27]Menicucci J,Beyenal H,Marsili E,et al.Procedure for determining maximum sustainable power generated by microbial fuel cells[J].Environ Sci Technol,2016,40(3):1062-1068.
    [28]Liang Peng,Fan Mingzhi,Cao Xiaoxin,et al.Composition and measurement of the apparent internal resistance in mircrobial fuel cell[J].Envronmental Science,2007,28(8):1894-1898.梁鹏,范明志,曹效鑫,等.微生物燃料电池表观内阻的构成和测量[J].环境科学,2007,28(8):1894-1898.
    [29]Kotloski N J,Gralnick J A.Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis[J].Mbio,2013,4(4):169-172.
    [30]Strik D P B T B,Hamelers H V M,Snel J F H,et al.Green electricity production with living plants and bacteria in a fuel cell[J].Int J Ener Res,2008,32(9):870-876.
    [31]Gorby Y A,Yanina S,McLean J S,et al.Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1and other microorganisms[J].Pans,2006,103(30):11358-11363.
    [32]Aelterman P,Freguia S,Keller J,et al.The anode potential regulates bacterial activity in microbial fuel cells[J].Appl Microbiol Biot,2008,78(3):409-418.
    [33]Suganthi S,Mohanapriya S,Raj V.Biocomposite protonexchange membrane electrolytes for direct methanol fuel cells[J].J Appl Polym Sci,2016,133(25):43514-43516.
    [34]Renslow R,Babauta J,Majors P,et al.Diffusion in biofilm respiring on electrodes[J].Energ Environ Sci,2012,6(2):595-607.
    [35]Fraiwan A,Adusumilli S P,Han D,et al.Microbial power-generating capabilities on micro-/nano-structured anodes in micro-sized microbial fuel cells[J].Fuel Cells,2014,14(6):801-809.
    [36]Leenen E J T M,Santos V A P D,Grolle K C F,et al.Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment[J].Water Res,1996,30(12):2985-2996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700