用户名: 密码: 验证码:
汽车驾驶人姿态监测系统研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Automobile Driver Posture Monitoring Systems: A Review
  • 作者:王宏雁 ; 赵明明 ; BEURIER ; Georges ; WANG ; Xu-guang
  • 英文作者:WANG Hong-yan;ZHAO Ming-ming;BEURIER Georges;WANG Xu-guang;School of Automotive Studies, Tongji University;Laboratory of Biomechanics and Impact Mechanics, French Institute of Science and Technology for Transport, Development and Networks;
  • 关键词:汽车工程 ; 驾驶人姿态监测系统 ; 综述 ; 智能驾驶人辅助系统 ; 智能乘员约束系统
  • 英文关键词:automotive engineering;;driver posture monitoring system;;review;;intelligent driver assistance system;;smart occupant restraint system
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:同济大学汽车学院;法国交通发展规划和交通网络科技研究院生物力学与碰撞力学实验室;
  • 出版日期:2019-02-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.186
  • 基金:国家留学基金委公派出国留学项目(201806260131)
  • 语种:中文;
  • 页:ZGGL201902002
  • 页数:18
  • CN:02
  • ISSN:61-1313/U
  • 分类号:5-22
摘要
随着自动驾驶技术的发展,驾驶人将会参与更多的与驾驶无关的活动,从而呈现出新的姿态,这些新姿态是优化传统被动安全系统的重要切入点。而且在未来相当长的时间内,自动驾驶车辆的行驶依然依赖于人和系统的密切配合。对驾驶人姿态的观察,则可以为判断驾驶人是否有能力及时接管车辆提供帮助,从而确保安全、合理的人机交互过程。通过对大量相关文献的系统性梳理,综述了汽车驾驶人姿态监测技术的智能化发展趋势,从传感器种类以及相应的姿态监测算法出发,分析了目前不同监测系统的优缺点。研究发现,尽管传感器技术和姿态识别算法取得了明显进步,然而廉价稳定且能够在实际驾驶条件下对驾驶人姿态准确感知的监测系统依然缺乏。总体而言,目前的监测系统大多只是集中于对驾驶人局部身体部位的感知,缺乏实际驾驶条件下的性能分析,并且对驾驶人状态的实时感知和预测能力仍有待完善。最后,针对目前监测系统所面临的问题,对未来可能的研究方向进行展望,并提出主动式立体视觉系统和压力传感器阵列相融合的驾驶人姿态监测方式。研究成果将为驾驶人姿态监测系统的研究提供参考和借鉴,从而有助于道路交通安全水平的进一步提升,同时也可为人机交互界面的设计带来启发。
        With the development of autonomous vehicles, drivers will adopt new postures, which should be considered for optimizing the future passive safety systems. On the other hand, the safety of recent autonomous vehicles is guaranteed by an elaborate interaction between the human driver and the automation system, and this situation will last for quite a long time. Given this context, posture monitoring is necessary to verify the driver's readiness to take over the control when required. Based on a systematic analysis of related literature, a detailed review of recent driver posture monitoring systems classified by the sensor categories and corresponding algorithms was performed. Advantages and disadvantages of different systems were analyzed and summarized. Despite the recent advancements in sensor technologies and algorithms, a cost-effective and robust driver posture monitoring system that can work in various real driving conditions does not exist. In general, most of the existing systems monitor the driver's body parts in isolation for specific research purpose, and few systems consider the body parts in conjunction. Most of the studies were performed in a controlled environment, and lack rigorous and quantitative evaluation in a moving automobile. In addition, real-time posture recognition and prediction methods need to be improved. Finally, future research and development directions to overcome the existing drawbacks are suggested, and a posture monitoring system based on a combination of active stereo vision system and force sensor arrays is recommended. This paper provides valuable insights on developing state-of-the-art driver posture monitoring systems to enhance the road traffic safety. Meanwhile, it also inspires the design of human-machine interfaces.
引文
[1] DINGUS T A, KLAUER S G, NEALE V L, et al. The 100-Car Naturalistic Driving Study, Phase Ⅱ- Results of the 100-car Field Experiment [R]. Blacksburg: NHTSA, 2006.
    [2] EUGENSSON A, BR?NNSTR?M M, FRASHER D, et al. Environmental, Safety Legal and Societal Implications of Autonomous Driving Systems [C] // TRB. Proceedings of the International Technical Conference on the Enhanced Safety of Vehicles (ESV). Washington DC: TRB, 2013: 1-10.
    [3] SHAOUT A, COLELLA D, AWAD S. Advanced Driver Assistance Systems: Past, Present and Future [C] // IEEE. Proceedings of the Seventh International Computer Engineering Conference. New York: IEEE, 2012: 72-82.
    [4] 周青,姬佩君,黄毅,等.未来交通事故场景中乘员智能保护的挑战与机遇[J].汽车安全与节能学报,2017,8(4):333-350. ZHOU Qing, JI Pei-jun, HUANG Yi, et al. Challenges and Opportunities of Smart Occupant Protection Against Motor Vehicle Collision Accidents in Future Traffic Environment [J]. Automotive Safety and Energy, 2017, 8 (4): 333-350.
    [5] CICCHINO J B. Effectiveness of Forward Collision Warning and Autonomous Emergency Braking Systems in Reducing Front-to-rear Crash Rates [J]. Accident Analysis and Prevention, 2017, 99: 142-152.
    [6] ANTONA J, EJIMA S, ZAMA Y. Influence of the Driver Conditions on the Injury Outcome in Front Impact Collisions [J]. International Journal of Automotive Engineering, 2011, 2 (2): 33-38.
    [7] UNTAROIU C D, ADAM T J. Performance-based Classification of Occupant Posture to Reduce the Risk of Injury in a Collision [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (2): 565-573.
    [8] ROOIJ L V. Effect of Various Pre-crash Braking Strategies on Simulated Human Kinematic Response with Varying Levels of Driver Attention [C] // TRB. Proceedings of the 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV). Washington DC: TRB, 2011: 1-9.
    [9] HAULT-DUBRULLE A, ROBACHE F, DELILLE R, et al. Influence of Pre-crash Driver Posture on injury Outcome: Airbag Interaction with Human Upper Extremities [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15 (S1): 295-297.
    [10] FARMER M E, JAIN A K. Smart Automotive Airbags: Occupant Classification and Tracking [J]. IEEE Transactions on Vehicular Technology, 2007, 56 (1): 60-80.
    [11] LU Z, HAPPEE R, CABRALL C D, et al. Human Factors of Transitions in Automated Driving: A General Framework and Literature Survey [J]. Transportation Research Part F, 2016, 43: 183-198.
    [12] ONNASCH L, WICKENS C D, LI H, et al. Human Performance Consequences of Stages and Levels of Automation: An Integrated Meta-analysis [J]. Human Factors, 2014, 56 (3): 476-488.
    [13] AKAMATSU M, GREEN P, BENGLER K. Automotive Technology and Human Factors Research: Past, Present, and Future [J]. International Journal of Vehicular Technology, 2013, 2013: 1-27.
    [14] CHENG S Y, TRIVEDI M M. Turn-intent Analysis Using Body Pose for Intelligent Driver Assistance [J]. IEEE Pervasive Computing, 2006, 5 (4): 28-37.
    [15] TRAN C, TRIVEDI M M. Driver Assistance for “Keeping Hands on the Wheel and Eyes on the Road” [C] // IEEE. Proceedings of the IEEE International Conference on Vehicular Electronics and Safety. New York: IEEE, 2009: 97-101.
    [16] PETERSEN A, BARRETT R. Postural Stability and Vehicle Kinematics During an Evasive Lane Change Manoeuvre: A Driver Training Study [J]. Ergonomics, 2009, 52 (5): 560-568.
    [17] TRAN C, TRIVEDI M M. Towards a Vision-based System Exploring 3D Driver Posture Dynamics for Driver Assistance: Lssues and Possibilities [C] // IEEE. Proceedings of the Intelligent Vehicles Symposium. New York: IEEE, 2010: 179-184.
    [18] XING Y, LV C, ZHANG Z, et al. Identification and Analysis of Driver Postures for In-vehicle Driving Activities and Secondary Tasks Recognition [J]. IEEE Transactions on Computational Social Systems, 2018, 5 (1): 95-108.
    [19] MANSFIELD N, SAMMONDS G, DARWAZEH N, et al. Movement Analysis to Indicate Discomfort in Vehicle Seats [C] // NADDEO A. Proceedings of the 1st International Comfort Congress. Salerno: Nottingham Trent University, 2017: 1-6.
    [20] SAMMONDS G M, FRAY M, MANSFIELD N J. Effect of Long Term Driving on Driver Discomfort and Its Relationship with Seat Fidgets and Movements (SFMs) [J]. Applied Ergonomics, 2017, 58: 119-127.
    [21] REED M, EBERT-HAMILTON S. Upper-extremity Postures and Activities in Naturalistic Driving [C] // FALLON L, EGBERS R. Proceedings of the WCXTM World Congress Experience. Detroit: SAE International, 2018: 1-5.
    [22] KONDYLI A, SISIOPIKU V P, ZHAO L, et al. Computer Assisted Analysis of Drivers' Body Activity Using a Range Camera [J]. IEEE Intelligent Transportation Systems Magazine, 2015, 7 (3): 18-28.
    [23] BAKER S, MATTHEWS I, XIAO J, et al. Real-time Non-rigid Driver Head Tracking for Driver Mental State Estimation [C] // TOYODA S. Proceedings of the 11th World Congress on Intelligent Transportation Systems. Nagoya: ITS, 2004: 1-12.
    [24] DONG Y, HU Z, UCHIMURA K, et al. Driver Inattention Monitoring System for Intelligent Vehicles: A Review [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (2): 596-614.
    [25] LEE S J, JO J, JUNG H G, et al. Real-time Gaze Estimator Based on Driver's Head Orientation for Forward Collision Warning System [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (1): 254-267.
    [26] SAHAYADHAS A, SUNDARAJ K, MURUGAPPAN M. Detecting Driver Drowsiness Based on Sensors: A Review [J]. Sensors, 2012, 12 (12): 16937-16953.
    [27] LIU H, WEI X, CHAI J, et al. Realtime Human Motion Control with A Small Number of Inertial Sensors [C] //GARLAND M, WANG R. Proceedings of the Symposium on Interactive 3D Graphics and Games. San Francisco: ACM, 2011: 133-140.
    [28] WONG C, ZHANG Z, KWASNICKI R, et al. Motion Reconstruction from Sparse Accelerometer Data Using PLSR [C] // IEEE. Proceedings of the International Conference on Wearable & Implantable Body Sensor Networks. New York: IEEE, 2012: 178-183.
    [29] SATHYANARAYANA A, NAGESWAREN S, GHASEMZADEH H, et al. Body Sensor Networks for Driver Distraction Identification [C] // IEEE. Proceedings of the International Conference on Vehicular Electronics and Safety. New York: IEEE, 2008: 120-125.
    [30] YANG C M, WU C C, CHOU C M, et al. Vehicle Driver's ECG and Sitting Posture Monitoring System [C] // IEEE. Proceedings of the International Conference on Information Technology and Applications in Biomedicine. New York: IEEE, 2010: 1-4.
    [31] LU Y F, LI C L. Recognition of Driver Turn Behavior Based on Video Analysis [J]. Advanced Materials Research, 2012, 433-440: 6230-6234.
    [32] LEE D S, CHONG T W, LEE B G. Stress Events Detection of Driver by Wearable Glove System [J]. IEEE Sensors Journal, 2017, 17 (1): 194-204.
    [33] CHOI M, KOO G, SEO M, et al. Wearable Device-Based System to Monitor a Driver's Stress, Fatigue, and Drowsiness [J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67 (3): 634-645.
    [34] VEERARAGHAVAN H, ATEV S, BIRD N, et al. Driver Activity Monitoring Through Supervised and Unsupervised Learning [C] // IEEE. Proceedings of the International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2005: 580-585.
    [35] VEERARAGHAVAN H, BIRD N, ATEV S, et al. Classifiers for Driver Activity Monitoring [J]. Transportation Research Part C, 2007, 15 (1): 51-67.
    [36] ZHAO C H, ZHANG B L, HE J, et al. Recognition of Driving Postures by Contourlet Transform and Random Forests [J]. IET Intelligent Transport Systems, 2012, 6 (6): 161-168.
    [37] YAN C, COENEN F, ZHANG B L. Driving Posture Recognition by Joint Application of Motion History Image and Pyramid Histogram of Oriented Gradients [J]. Advanced Materials Research, 2014, 846-847: 1102-1105.
    [38] YAN C, ZHANG B, COENEN F. Driving Posture Recognition by a Hierarchal Classification System with Multiple Features [C] // IEEE. Proceedings of the International Congress on Image and Signal Processing. New York: IEEE, 2014: 83-88.
    [39] GUPTA R, MANGALRAJ P, AGRAWAL A, et al. Posture Recognition for Safe Driving [C] // IEEE. Proceedings of the Third International Conference on Image Information Processing (ICIIP). New York: IEEE, 2015: 141-146.
    [40] BAHETI B, GAJRE S, TALBAR S. Detection of Distracted Driver Using Convolutional Neural Network [C] // IEEE. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2018: 1032-1038.
    [41] OHN-BAR E, MARTIN S, TRIVEDI M M. Driver Hand Activity Analysis in Naturalistic Driving Studies: Challenges, Algorithms, and Experimental Studies [J]. Journal of Electronic Imaging, 2013, 22 (4): 04111901-04111910.
    [42] OHN-BAR E, MARTIN S, TAWARI A, et al. Head, Eye, and Hand Patterns for Driver Activity Recognition [C] // IEEE. Proceedings of the 22nd International Conference on Pattern Recognition. New York: IEEE, 2014: 660-665.
    [43] DAS N, OHN-BAR E, TRIVEDI M M. On Performance Evaluation of Driver Hand Detection Algorithms: Challenges, Dataset, and Metrics [C] // IEEE. Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2015: 2953-2958.
    [44] WATTA P, LAKSHMANAN S, HOU Y. Nonparametric Approaches for Estimating Driver Pose [J]. IEEE Transactions on Vehicular Technology, 2007, 56 (4): 2028-2041.
    [45] GUO Z, LIU H, WANG Q, et al. A Fast Algorithm Face Detection and Head Pose Estimation for Driver Assistant System [C] // IEEE. Proceedings of the 8th International Conference on Signal Processing. New York: IEEE, 2007: 1733-1737.
    [46] MURPHY-CHUTORIAN E, DOSHI A, TRIVEDI M M. Head Pose Estimation for Driver Assistance Systems: A Robust Algorithm and Experimental Evaluation [C] // IEEE. Proceedings of the Intelligent Transportation Systems Conference. New York: IEEE, 2007: 709-714.
    [47] WU J, TRIVEDI M M. A Two-stage Head Pose Estimation Framework and Evaluation [J]. Pattern Recognition, 2008, 41 (3): 1138-1158.
    [48] MARTIN S, TAWARI A, MURPHY-CHUTORIAN E, et al. On the Design and Evaluation of Robust Head Pose for Visual User Interfaces: Algorithms, Databases, and Comparisons [C] // PFLEGING B, KURZ M. Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York: ACM, 2012: 149-154.
    [49] TAWARI A, MARTIN S, TRIVEDI M M. Continuous Head Movement Estimator for Driver Assistance: Issues, Algorithms, and On-road Evaluations [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (2): 818-830.
    [50] TRAN C, DOSHI A, TRIVEDI M M. Modeling and Prediction of Driver Behavior by Foot Gesture Analysis [J]. Computer Vision and Image Understanding, 2012, 116 (3): 435-445.
    [51] CHENG S Y, TRIVEDI M M. Vision-based Infotainment User Determination by Hand Recognition for Driver Assistance [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (3): 759-764.
    [52] FU X, XIAO G, PELI E, et al. Automatic Calibration Method for Driver's Head Orientation in Natural Driving Environment [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (1): 303-312.
    [53] KATO T, FUJII T, TANIMOTO M. Detection of Driver's Posture in the Car by Using Far Infrared Camera [C] // IEEE. Proceedings of the Intelligent Vehicle Symposium. New York: IEEE, 2004: 339-344.
    [54] TRIVEDI M M, CHENG S Y, CHILDERS E M C, et al. Occupant Posture Analysis with Stereo and Thermal Infrared Video: Algorithms and Experimental Evaluation [J]. IEEE Transactions on Vehicular Technology, 2004, 53 (6): 1698-1712.
    [55] CHENG S Y, PARK S, TRIVEDI M M. Multi-spectral and Multi-perspective Video Arrays for Driver Body Tracking and Activity Analysis [J]. Computer Vision and Image Understanding, 2007, 106 (2/3): 245-257.
    [56] IZUMI T, SAITO H, HAGIHARA T, et al. Development of Occupant Detection System Using Far-infrared Ray (FIR) Camera [J]. SEI Technical Review, 2009, 174: 72-77.
    [57] BOVERIE S, QUELLEC J L, DEVY M, et al. 3D Perception for Vehicle Inner Space Monitoring [M]. Heidelberg: Springer, 2000.
    [58] GAUTAMA S, LACROIX S, DEVY M. Evaluation of Stereo Matching Algorithms for Occupant Detection [C] // IEEE. Proceedings of the International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-time Systems. New York: IEEE, 1999: 177-185.
    [59] FABER P. Seat Occupation Detection Inside Vehicles [C] // IEEE. Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation. New York: IEEE, 2000: 187-191.
    [60] FABER P, FORSTNER W. A System Architecture for an Intelligent Airbag Deployment [C] // IEEE. Proceedings of the IEEE Intelligent Vehicles Symposium. New York: IEEE, 2000: 70-75.
    [61] BOVERIE S, DEVY M, LERASLE F. Comparison of Structured Light and Stereovision Sensors for New Airbag Generations [J]. Control Engineering Practice, 2003, 11 (12): 1413-1421.
    [62] KROTOSKY S J, CHENG S Y, TRIVEDI M M. Real-time Stereo-based Head Detection Using Size, Shape and Disparity Constraints [C] // IEEE. Proceedings of the Intelligent Vehicles Symposium. New York: IEEE, 2008: 550-556.
    [63] CHENG S Y, TRIVEDI M M. Human Posture Estimation Using Voxel Data for“Smart” Airbag Systems: Issues and Framework [C] // IEEE. Proceedings of IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 84-89.
    [64] TRAN C, TRIVEDI M M. Introducing “XMOB”: Extremity Movement Observation Framework for Upper Body Pose Tracking in 3D [C] // IEEE. Proceedings of the IEEE International Symposium on Multimedia. New York: IEEE, 2009: 446-447.
    [65] KLOMARK M. Occupant Detection Using Computer Vision [D]. Link?ping: Link?ping University, 2000.
    [66] SHOTTON J, GIRSHICK R, FITZGIBBON A, et al. Efficient Human Pose Estimation from Single Depth Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (12): 2821-2840.
    [67] HAN J, SHAO L, XU D, et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review [J]. IEEE Transactions on Cybernetics, 2013, 43 (5): 1318-1334.
    [68] OHN-BAR E, TRIVEDI M. In-vehicle Hand Activity Recognition Using Integration of Regions [C] // IEEE. Proceedings of Intelligent Vehicles Symposium. New York: IEEE, 2013: 1034-1039.
    [69] OHN-BAR E, TRIVEDI M M. Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (6): 2368-2377.
    [70] MARTIN S, OHN-BAR E, TAWARI A, et al. Understanding Head and Hand Activities and Coordination in Naturalistic Driving Videos [C] // IEEE. Proceedings of the Intelligent Vehicles Symposium. New York: IEEE, 2014: 884-889.
    [71] TOMA M I, ROTHKRANTZ L J M, ANTONYA C. Car Driver Skills Assessment Based on Driving Postures Recognition [C] // IEEE. Proceedings of the IEEE International Conference on Cognitive Infocommunications. New York: IEEE, 2012: 439-446.
    [72] SHIA V A, GAO Y, VASUDEVAN R, et al. Semiautonomous Vehicular Control Using Driver Modeling [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (6): 2696-2709.
    [73] XU X, MCGORRY R W. The Validity of the First and Second Generation Microsoft KinectTM for Identifying Joint Center Locations During Static Postures [J]. Applied Ergonomics, 2015, 49: 47-54.
    [74] PLANTARD P, AUVINET E, PIERRES A S L, et al. Pose Estimation with a Kinect for Ergonomic Studies: Evaluation of the Accuracy Using a Virtual Mannequin [J]. Sensors, 2015, 15 (1): 1785-1803.
    [75] KONDYLI A, SISIOPIKU V, BARMPOUTIS A. A 3D Experimental Framework for Exploring Drivers' Body Activity Using Infrared Depth Sensors [C] // IEEE. Proceedings of the International Conference on Connected Vehicles and Expo. New York: IEEE, 2013: 574-579.
    [76] ZHAO M, BEURIER G, WANG H, et al. In Vehicle Diver Postural Monitoring Using a Depth Camera Kinect [C] //GABLER H C, TECH V. Proceedings of the WCXTM World Congress Experience. Detroit: SAE International, 2018: 1-9.
    [77] FRITZSCHE M, PRESTELE C, BECKER G, et al. Vehicle Occupancy Monitoring with Optical Range-sensors [C] // IEEE. Proceedings of the IEEE Intelligent Vehicles Symposium 2004. New York: IEEE, 2004: 90-94.
    [78] DEVARAKOTA P R, CASTILLO-FRANCO M, GINHOUX R, et al. 3-D-skeleton-based Head Detection and Tracking Using Range Images [J]. IEEE Transactions on Vehicular Technology, 2009, 58 (8): 4064-4077.
    [79] DEMIRDJIAN D, VARRI C. Driver Pose Estimation with 3D Time-of-flight Sensor [C] // IEEE. Proceedings of the IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems. New York: IEEE, 2009: 16-22.
    [80] SARBOLANDI H, LEFLOCH D, KOLB A. Kinect Range Sensing: Structured-light Versus Time-of-flight Kinect [J]. Computer Vision and Image Understanding, 2015, 139: 1-20.
    [81] PAGLIARI D, PINTO L. Calibration of Kinect for Xbox One and Comparison Between the Two Generations of Microsoft Sensors [J]. Sensors, 2015, 15 (11): 27569-27589.
    [82] PARK B K D, JONES M, MILLER C, et al. In-vehicle Occupant Head Tracking Using a Low-cost Depth Camera [C] // HU J. Proceedings of the WCXTM World Congress Experience. Detroit: SAE International, 2018: 1-7.
    [83] FENETY P A, PUTNAM C, WALKER J M. In-chair Movement: Validity, Reliability and Implications for Measuring Sitting Discomfort [J]. Applied Ergonomics, 2000, 31 (4): 383-393.
    [84] TAN H Z, SLIVOVSKY L A, PENTLAND A. A Sensing Chair Using Pressure Distribution Sensors [J]. Mechatronics IEEE/ASME Transactions on Mechatronics, 2001, 6 (3): 261-268.
    [85] MOTA S, PICARD R W. Automated Posture Analysis for Detecting Learner's Interest Level [C] // IEEE. Proceedings of the Computer Vision and Pattern Recognition Workshop. New York: IEEE, 2003: 49-55.
    [86] ZHU M, MARTINEZ A M, TAN H Z. Template-based Recognition of Static Sitting Postures [C] // IEEE. Proceedings of the Computer Vision and Pattern Recognition Workshop Madison. New York: IEEE, 2003: 50-56.
    [87] ANDREONI G, SANTAMBROGIO G C, RABUFFETTI M, et al. Method for the Analysis of Posture and Interface Pressure of Car Drivers [J]. Applied Ergonomics, 2002, 33 (6): 511-522.
    [88] RIENER A, FERSCHA A. Driver Activity Recognition from Sitting Postures [C] // CITESEER. Proceedings of the Mensch & Computer Workshopband. Weimar: Citeseer, 2007: 55-62.
    [89] RIENER A, FERSCHA A. Supporting Implicit Human-to-vehicle Interaction: Driver Identification from Sitting postures [C] // MAIER R, EKICI E. Proceedings of the 1st International Symposium on Vehicular Computing Systems. Dublin: ICST, 2008: 1-10.
    [90] INAGAKI T. Smart Collaboration Between Humans and Machines Based on Mutual Understanding [J]. Annual Reviews in Control, 2008, 32 (2): 253-261.
    [91] 高振海,肖振华,李红建.基于体压分布检测和支持矢量机分类的汽车乘员坐姿识别[J].机械工程学报,2009,45(7):216-220. GAO Zhen-hai, XIAO Zhen-hua, LI Hong-jian. Occupant Position Recognition with Seat Surface Pressure Distributions and Support Vector Machines Classifier [J]. Journal of Mechanical Engineering, 2009, 45 (7): 216-220.
    [92] PARK S J, MIN S N, SUBRAMANIYAM M, et al. Driving Posture Measurement Using 3D Scanning Measuring Technique [J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2015, 8: 600-605.
    [93] DING M, SUZUKI T, OGASAWARA T. Estimation of driver's Posture Using Pressure Distribution Sensors in Driving Simulator and On-road Experiment [C] // IEEE. Proceedings of IEEE International Conference on Cyborg and Bionic Systems (CBS). New York: IEEE, 2017: 215-220.
    [94] BRAUN A, WICHERT R, KUIJPER A, et al. Capacitive Proximity Sensing in Smart Environments [J]. Journal of Ambient Intelligence and Smart Environments, 2015, 7 (4): 483-510.
    [95] SMITH J R. Electric Field Imaging [D]. Boston: Massachusetts Institute of Technology, 1999.
    [96] GEORGE B, ZANGL H, BRETTERKLIEBER T, et al. A combined Inductive-capacitive Proximity Sensor and Its Application to Seat Occupancy Sensing [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59 (5): 1463-1470.
    [97] BRAUN A, FRANK S, MAJEWSKI M, et al. CapSeat: Capacitive Proximity Sensing for Automotive Activity Recognition [C] // EREN A, ANTROBUS V. Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Nottingham: ACM, 2015: 225-232.
    [98] ZIRAKNEJAD N, LAWRENCE P D, ROMILLY D P. Vehicle Occupant Head Position Quantification Using an Array of Capacitive Proximity Sensors [J]. IEEE Transactions on Vehicular Technology, 2015, 64 (6): 2274-2287.
    [99] MüHLBACHER-KARRER S, MOSA A H, FALLER L M, et al. A Driver State Detection System-combining a Capacitive Hand Detection Sensor with Physiological Sensors [J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66 (4): 624-636.
    [100] MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor System for Driver's Hand-gesture Recognition [C] // IEEE. Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). New York: IEEE, 2015: 1-8.
    [101] PULLANO S A, FIORILLO A S, GATTA A L, et al. Comprehensive System for the Evaluation of the Attention Level of a Driver [C] // IEEE. Proceedings of the International Symposium on Medical Measurements and Applications. New York: IEEE, 2016: 1-5.
    [102] SHUM H P, HO E S, JIANG Y, et al. Real-time Posture Reconstruction for Microsoft Kinect [J]. IEEE Transactions on Cybernetics, 2013, 43 (5): 1357-1369.
    [103] PLANTARD P, SHUM H P, MULTON F. Filtered Pose Graph for Efficient Kinect Pose Reconstruction [J]. Multimedia Tools and Applications, 2017, 76 (3): 4291-4312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700