用户名: 密码: 验证码:
茶用菊品种金丝皇菊对盐胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Salt-tolerance Mechanism of Chrysanthemum Cultivar Jinsihuangju
  • 作者:王磊 ; 赵鹏飞 ; 逯久幸 ; 张开明 ; 李永华
  • 英文作者:WANG Lei;ZHAO Pengfei;LU Jiuxing;ZHANG Kaiming;LI Yonghua;College of Forestry,Henan Agricultural University;
  • 关键词:茶用菊 ; 盐胁迫 ; 叶绿素荧光 ; 抗氧化酶 ; 脂肪酸
  • 英文关键词:Chrysanthemum;;Salt stress;;Chlorophyll fluorescence;;Antioxidant enzymes;;Fatty acids
  • 中文刊名:HNNY
  • 英文刊名:Journal of Henan Agricultural Sciences
  • 机构:河南农业大学林学院;
  • 出版日期:2019-02-15
  • 出版单位:河南农业科学
  • 年:2019
  • 期:v.48;No.529
  • 基金:河南省科技攻关项目(182102110190)
  • 语种:中文;
  • 页:HNNY201902017
  • 页数:8
  • CN:02
  • ISSN:41-1092/S
  • 分类号:118-125
摘要
通过盐胁迫下茶用菊的抗性机制分析,为茶用菊在盐渍化土地上的生产提供理论参考。以金丝皇菊为供试材料,进行4种浓度NaCl溶液处理,对叶绿素荧光、抗氧化酶活性以及脂肪酸含量等相关指标进行测定,并探讨脂肪酸去饱和酶关键基因的表达状况。结果表明:盐胁迫下,随着处理时间的增加,最大光化学效率(Fv/Fm)逐渐降低,非光化学猝灭系数(NPQ)不断升高。不同盐浓度处理下叶绿素含量变化具有差异性。不同盐浓度处理下超氧化物歧化酶(SOD)活性变化具有差异性,在所有处理组中变化不规律。各处理组中过氧化物酶(POD)、过氧化氢酶(CAT)活性、丙二醛(MDA)含量以及脯氨酸含量逐渐增加,可溶性糖含量先增加后减少,50、200 mmol/L处理组中可溶性蛋白含量先增加后减少,100 mmol/L处理组中可溶性蛋白含量不断减少。与清水对照组相比,金丝皇菊的不饱和脂肪酸含量在50、100 mmol/L处理组中逐渐增加,在200 mmol/L处理组中先上升后下降。在50、100 mmol/L处理组中,CmSAD、CmFAD2和CmFAD7的表达量与不饱和脂肪酸含量变化基本一致,均呈现先上升后下降的趋势,然而,在200 mmol/L处理组中,与不饱和脂肪酸含量变化相比,基因的表达量变化则呈现出一定的滞后性。综上,低浓度盐胁迫下金丝皇菊通过提高膜脂不饱和脂肪酸含量,增加热耗散以及提高抗氧化酶活性等响应机制来保护光合系统免受破坏,从而增强细胞膜体系的稳定性,缓解盐胁迫伤害。
        To provide theoretical reference for tea chrysanthemum production in salinized land,the resistance mechanism of tea chrysanthemum under salt stress was analyzed.In this paper,Jinsihuangju,an tea chrysanthemum cultivar,was used as experimental material.The changes of chlorophyll fluorescence,antioxidant enzyme activity,fatty acids contents under four different NaCl solutions were determined,and the expression of key genes of fatty acid desaturase was also investigated.The results showed that the maximum photochemical efficiency(Fv/Fm) decreased with the increase of treatment time,while the non-photochemical quenching coefficient(NPQ) increased.The changes of chlorophyll content and superoxide dismutase(SOD) activity under different salt concentration were different,which did not showed regularly changes in all the treatment groups.The activities of POD and CAT,and contents of MDA and proline increased gradually,while the content of soluble sugar increased first and then decreased in all the treatment groups. The soluble protein increased first and then decreased under treatment of 50 mmol/L and 200 mmol/L NaCl solution,while decreased gradually under treatment of 100 mmol/L NaCl.Compared with water control group,the unsaturated fatty acid content increased gradually in treatment groups of 50 mmol/L and 100 mmol/L NaCl solution,while increased first and then decreased in NaCl of 200 mmol/L group.The expression of CmSAD,CmFAD2 and CmFAD7 increased first and then decreased in the groups of 50 mmol/L and 100 mmol/L NaCl,which were consistent with the content of unsaturated fatty acid.However,the expression of those three genes showed a time lag compared to the content of unsaturated fatty acid in the treatment group of 200 mmol/L NaCl.All the above results suggested that chrysanthemum Jinsihuangju may protect the photosynthetic system from damage by increasing heat dissipation and increasing antioxidant enzyme activity,which enhanced membrane system stability to alleviate salt stress injury.
引文
[1] HASEGAWA P M,BRESSAN R A,ZHU J K,et al.Plant cellular and molecular responses to high salinity[J].Annu Rev Plant Physiol Plant Mol Biol,2000,51(51):463-499.
    [2] BRUNING B,ROZEMA J.Symbiotic nitrogen fixation in legumes:Perspectives for saline agriculture[J].Environmental & Experimental Botany,2013,92(8):134-143.
    [3] WANG R L,HUA C,ZHOU F,et al.Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar[J].Photosynthetica,2009,47(1):125-127.
    [4] FOYER C H,NOCTOR G.Oxidant and antioxidant signalling in plants:A re-evaluation of the concept of oxidative stress in a physiological context[J].Plant Cell & Environment,2010,28(8):1056-1071.
    [5] RAJPUT V D,CHEN Y,AYUP M.Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth[J].Russian Journal of Plant Physiology,2015,62(2):229-236.
    [6] MAJUMDER M K,MANDAL A K,Mahapatra S,et al.The role of some physiological and biochemical parameters in evaluation of salt tolerance in rice(Oryza sativa L.)[J].Indian Agriculturist,2010,54(1):93-105.
    [7] GALLAZZINI M,BURG M B.What’s new about osmotic regulation of glycerophosphocholine[J].Physiology,2009,24(24):245-249.
    [8] PANDOLFI C,POTTOSIN I,CUIN T,et al.Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants[J].Plant & Cell Physiology,2010,51(3):422-434.
    [9] MUNNS R,GILLIHAM M.Salinity tolerance of crops-what is the cost?[J].New Phytologist,2015,208(3):668-673.
    [10] SINGH R,KAUSHIK S,WANG Y,et al.Autophagy regulates lipid metabolism[J].Nature,2009,458(6):1131-1135.
    [11] MAGDY M,MANSOUR F,HASSELT P R V,et al.Plasma membrane lipid alterations induced by NaCl in winter wheat roots[J].Physiologia Plantarum,2010,92(3):473-478.
    [12] MèNESAFFRANé L,DUBUGNON L,CHéTELAT A,et al.Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis[J].Journal of Biological Chemistry,2009,284(3):1702-1708.
    [13] ZHANG W L,PU J Y,ZHU M Y,et al.Cloning and analysis of PcSAD gene from Pistacia chinensis Bunge[J].Genomics & Applied Biology,2013,2(4):503-509.
    [14] ZHANG M,BARG R,YIN M,et al.Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J].Plant Journal,2010,44(3):361-371.
    [15] 管志勇,陈发棣,滕年军,等.5种菊花近缘种属植物的耐盐性比较[J].中国农业科学,2010,43(4):787-794.
    [16] 詹文悦,李辉,康健,等.盐胁迫对菊芋糖组分含量和分配的影响[J].草业学报,2017,26(5):127-134.
    [17] 李永华,史春会,李永,等.低温下4种秋菊叶片和根系膜脂脂肪酸组分比较[J].植物生理学报,2013,49(5):457-462.
    [18] 李永华,王翠丽,李永,等.菊花脂肪酸脱饱和酶基因CmFAD7的克隆与表达分析[J].园艺学报,2015,42(1):65-74.
    [19] LI Y,LI Y,YANG P,et al.Phospholipid and fatty acid composition in leaves and roots of ten autumn chrysanthemum cultivars grown at low temperature[J].Horticulture Environment & Biotechnology,2017,58(4):334-341.
    [20] 王学奎,黄见良.植物生理生化实验原理与技术[M].北京:高等教育出版社,2015.
    [21] 李合生.现代植物生理学[M].北京:高等教育出版社,2012.
    [22] 张华奥,逯久幸,李静,等.菊花去饱和酶CmSAD基因的克隆与表达分析[J].河南农业大学学报,2017,51(3):324-329.
    [23] TAKAHASHI S,MURATA N.How do environmental stresses accelerate photoinhibition?[J].Trends in Plant Science,2008,13(4):178-182.
    [24] ATHAR H,ZAFAR Z U,ASHRAF M.Glycinebetaine improved photosynthesis in canola under salt stress:Evaluation of chlorophyll fluorescence parameters as potential indicators[J].Journal of Agronomy & Crop Science,2015,201(6):428-442.
    [25] AHMED C B,ROUINA B B,SENSOY S,et al.Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree[J].Journal of Agricultural & Food Chemistry,2010,58(7):4216-4222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700