用户名: 密码: 验证码:
大坝智能建设研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of the intelligent construction of dams
  • 作者:钟登华 ; 时梦楠 ; 崔博 ; 王佳俊 ; 关涛
  • 英文作者:ZHONG Denghua;SHI Mengnan;CUI Bo;WANG Jiajun;GUAN Tao;Tianjin University State Key Laboratory of Hydraulic Engineering Simulation and Safety;
  • 关键词:大坝 ; 智能仿真 ; 智能碾压 ; 智能灌浆 ; 智能交通 ; 智能振捣 ; 智能温控 ; 集成平台
  • 英文关键词:dam;;intelligent simulation;;intelligent compaction;;intelligent grouting;;intelligent transportation;;intelligent concrete vibration;;intelligent temperature control;;intelligent integrated platform
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2019-01-23 17:23
  • 出版单位:水利学报
  • 年:2019
  • 期:v.50;No.508
  • 基金:国家自然科学基金创新群体基金项目(51621092);国家自然科学基金项目(51439005);国家自然科学基金雅砻江联合基金项目(U1765205)
  • 语种:中文;
  • 页:SLXB201901006
  • 页数:16
  • CN:01
  • ISSN:11-1882/TV
  • 分类号:42-56+65
摘要
大坝智能建设对全面提高我国大坝建设智能化管理水平和保障大坝建设质量至关重要。在新一代信息技术(如云计算、大数据、物联网、移动互联网等)、人工智能、区块链、互联网+等技术与大坝建设深度融合并飞速发展的新时代背景下,大坝建设面临着如何提高智能化、信息化、数字化和精准化水平等一系列问题,而大坝智能建设则是应对这些挑战的有效战略措施。本文首先厘清大坝智能建设的原动力、基本理念与技术内涵;其次着重梳理了大坝智能建设中关键的理论、方法与技术的研究进展;最后探讨了大坝智能建设未来的发展方向及趋势。
        The intelligent construction of dams is essential to comprehensively improve the intelligent management level of dam construction and ensure the quality of dam construction in China. Dam constructionin the context of a new era of deep integration and rapid development of new generation information technol?ogies(such as cloud computing,big data,Internet of things,mobile Internet,etc.),artificial intelligence,blockchain,Internet accelerated speed and other technologies Faced with a series of issues such as how toimprove the level of intelligent,informationization,digitization and precision,dam intelligent construction isan effective strategic measure to meet these challenges. This paper first analysis the motive force,basic con?cept and technical connotation of dam intelligent construction. Secondly,it introduces and analyzes the re?search progress of key theories,methods and techniques in dam intelligent construction. Finally,it discusses the future development direction of dam intelligent construction and trend.
引文
[1]关志成.中国电气工程大典[M].北京:中国电力出版社,2010.
    [2]钟登华,王飞,吴斌平,等.从数字大坝到智慧大坝[J].水力发电学报,2015,34(10):1-13.
    [3] ZHONG D H,BO C,LIU D H,et al. Theoretical research on construction quality real-time monitoring and sys?tem integration of core rockfill dam[J]. Science in China,2009,52(11):3406-3412.
    [4] ZHONG D H,LIU D H. Real-time compaction quality monitoring of high core rockfill dam[J]. Science ChinaTechnological Sciences,2011,54(7):1906-1913.
    [5]马洪琪,钟登华,张宗亮,等.重大水利水电工程施工实时控制关键技术及其工程应用[J].中国工程科学,2011,13(12):20-27.
    [6]钟登华,胡程顺,张静.高土石坝施工系统可视化仿真与应用研究[J].水利水电技术,2004,35(12):50-55.
    [7]朱光熙,徐世志.缆机浇筑混凝土坝的计算机模拟技术研究[J].水利学报,1985(9):62-71.
    [8] ZHONG D,LI J,ZHU H,et al. Geographic information system-based visual simulation methodology and its ap?plication in concrete dam construction processes[J]. Journal of Construction Engineering&Management,2004,130(5):742-750.
    [9]刘宁,钟登华,张平.高心墙堆石坝施工现场交通可视化仿真研究[J].水利水电技术,2012,43(4):73-78.
    [10] CUI B,WANG R. Real-time monitoring technology of material transportation to dam and its application in corerockfill dam[C]//International Conference on Transportation Information and Safety. 2013:553-557.
    [11]贺文涛.上坝车载物料自动加水系统的设计与实现[D].天津:天津大学,2014.
    [12] LIU D,CUI B,LIU Y,et al. Automatic control and real-time monitoring system for earth-rock dam materialtruck watering[J]. Automation in Construction,2013,30:70-80.
    [13]黄声享,刘经南,吴晓铭. GPS实时监控系统及其在堆石坝施工中的初步应用[J].武汉大学学报(信息科学版),2005,30(9):813-816.
    [14]钟登华,刘东海,崔博.高心墙堆石坝碾压质量实时监控技术及应用[J].中国科学(技术科学),2011,41(8):1027-1034.
    [15] LIU D,LI Z,LIAN Z. Compaction quality assessment of earth-rock dam materials using roller-integrated com?paction monitoring technology[J]. Automation in Construction,2014,44(8):234-246.
    [16]崔博.心墙堆石坝施工质量实时监控系统集成理论与应用[D].天津:天津大学,2010.
    [17]张宗亮,钟登华.超高面板堆石坝监测信息管理与安全评价的理论及实践[J].天津大学学报(自然科学与工程技术版),2008,41(9):1083-1086.
    [18]张国新,刘有志,刘毅.“数字大坝”朝“智能大坝”的转变——高坝温控防裂研究进展[C]//中国大坝协会2012学术年会. 2012:74-84.
    [19]李庆斌,林鹏.论智能大坝[J].水力发电学报,2014,33(1):139-146.
    [20]樊启祥,周绍武,林鹏,等.大型水利水电工程施工智能控制成套技术及应用[J].水利学报,2016,47(7):916-923.
    [21] ZHANG J,ZHONG D,WU B,et al. Earth dam construction simulation considering stochastic rainfall impact[J]. Computer Aided Civil and Infrastructure Engineering,2017,33(6):459-480.
    [22] DU R,ZHONG D,YU J,et al. Construction simulation for a core rockfill dam based on optimal construction stag?es and zones:case study[J]. Journal of Computing in Civil Engineering,2016,30(3):05015002.
    [23]钟登华,吴康新,练继亮.基于多Agent的混凝土坝施工仿真与优化研究[J].系统仿真学报,2008(2):485-498.
    [24]毕磊.基于不确定性分析的地下洞室群施工进度仿真分析与优化研究[D].天津:天津大学,2015.
    [25] YU J,ZHONG D,REN B,et al. Probabilistic Risk Analysis of Diversion Tunnel Construction Simulation[J].Computer Aided Civil and Infrastructure Engineering,2017,32(9):748-771.
    [26]闫玉亮.耦合优化ICSRAM和BBNs方法的心墙堆石坝施工进度风险分析[D].天津:天津大学,2017.
    [27]钟登华,张元坤,吴斌平,等.基于实时监控的碾压混凝土坝仓面施工仿真可视化分析[J].河海大学学报(自然科学版),2016,44(5):377-385.
    [28]钟登华,翟海峰,崔博,等.基于实时监控的沥青混凝土心墙坝坝面碾压施工仿真研究[J].水力发电学报,2015,34(7):118-126.
    [29] GUAN T,ZHONG D H,REN B Y,et al. Construction simulation of high arch dams based on fuzzy Bayesian up?dating algorithm[J]. Journal of Zhejiang University Science A,2018,19(7):505-520.
    [30]钟登华,关涛,任炳昱.基于改进重抽样法的高拱坝施工进度仿真研究[J].水利学报,2016,47(4):473-482.
    [31]杜荣祥,心墙堆石坝施工智能监控理论与应用研究[D].天津:天津大学,2017.
    [32]钟登华,任炳昱,李明超,等.高拱坝施工质量与进度实时控制理论及应用[J].中国科学(技术科学),2010,40(12):1389-1397.
    [33]王乾伟.基于自适应仿真的高碾压混凝土坝施工进度实时控制理论及应用研究[D].天津:天津大学,2017.
    [34]钟登华,刘东海,郑家祥.基于GIS的混凝土坝施工三维动态可视化仿真研究[J].系统工程理论与实践,2003(5):125-130.
    [35]钟登华,张琴娅,杜荣祥,等.基于CATIA的心墙堆石坝施工动态仿真[J].天津大学学报(自然科学与工程技术版),2015,48(12):1118-1125.
    [36]王志宁,崔博,任炳昱,等.基于增强现实的堆石坝工程三维可视化场景构建研究[J].水力发电,2018,44(5):53-56.
    [37] SANDSTR?M A J,PETTERSSON C B. Intelligent systems for QA/QC in soil compaction[J/OL]. Proc AnnualTransportation Research Board Meeting,2004. http://www. intelligentcompaction. com/downloads/PapersRe?ports/GeoDynamik_Sandstrom_Intelligent%20Systems%20for%20QAQC%20in%20Soil%20Compaction_2004.pdf.
    [38]徐光辉,雒泽华,田波.连续压实控制技术发展综述[J].筑路机械与施工机械化,2015,32(8):34-38.
    [39] BEAINY F,COMMURI S,ZAMAN M. Dynamical response of vibratory rollers during the compaction of asphaltpavements[J]. Journal of Engineering Mechanics,2014,140(7):04014039.
    [40]王爱国.基于碾压机做功的堆石坝压实质量实时监测与快速评估方法及应用[D].天津:天津大学,2014.
    [41] ZHANG Q L,LIU J Y,LI Q B. Roller-integrated acoustic wave detection technique for rockfill materials[J].Applied Sciences,2017,7(11):1118-1138.
    [42] HUA T,YANG X,YAO Q,et al. Assessment of real-time compaction quality test indexes for rockfill materialbased on roller vibratory acceleration analysis[J]. Advances in Materials Science and Engineering,2018. https://doi. org/10. 1155/2018/2879321.
    [43] MEEHAN C L,CACCIOLA D V,TEHRANI F S,et al. Assessing soil compaction using continuous compactioncontrol and location-specific in situ tests[J]. Automation in Construction,2017,73:31-44.
    [44] WANG J,ZHONG D,WU B,et al. Evaluation of compaction quality based on SVR with CFA:case study oncompaction quality of earth-rock dam[J]. Journal of Computing in Civil Engineering,2018,32(3):05018001.
    [45] MEEHAN L M,CACCIOLA D V,TEHRANI F S,et al. Assessing soil compaction using continuous compactioncontrol and location-specific in situ tests[J]. Automation in Construction,2017,73:31-44.
    [46] BEAINY F,COMMURI S,ZAMAN M. Quality assurance of hot mix asphalt pavements using the intelligent as?phalt compaction analyzer[J]. Journal of Construction Engineering&Management,2012,138(2):178-187.
    [47] LIU Donghai,LIN Min,LI Shuai. Real-time quality monitoring and control of highway compaction[J]. Automa?tion in Construction,2016,62:114-123.
    [48]刘东海,王爱国,柳育刚,等.基于碾轮振动性态分析的土石坝压实质量实时监测与评估[J].水利学报,2014,45(2):163-170.
    [49] LV P,WANG X,LIU Z,et al. Porosity-and reliability-based evaluation of concrete-face rock dam compactionquality[J]. Automation in Construction,2017,81:196-209.
    [50]王佳俊,钟登华,关涛,等.基于KM和AC-BFA模糊逻辑的土石坝压实质量实时评价[J/OL].水力发电学报,1-12(2019-01-15). http://kns.cnki.net/kcms/detail/11.2241.tv.20181011.1330.004.html.
    [51]林威伟,钟登华,胡炜,等.基于随机森林算法的土石坝压实质量动态评价研究[J].水利学报,2018,49(8):945-955.
    [52]钟登华,鄢玉玲,崔博,等.考虑压实质量影响的碾压混凝土坝层间结合质量动态评价研究[J].水利学报,2017,48(10):1135-1146.
    [53] MINCHIN R E,SWANSON D C,GRUSS A F,et al. Computer applications in intelligent compaction[J]. Jour?nal of Computing in Civil Engineering,2008,22(4):243-251.
    [54] KUENZEL R,TEIZER J,MUELLER M,et al. SmartSite:Intelligent and autonomous environments,machin?ery,and processes to realize smart road construction projects[J]. Automation in Construction,2016,71:21-33.
    [55] BARMAN M,NAZARI M,IMRAN S A,et al. Quality control of subgrade soil using intelligent compaction[J].Innovative Infrastructure Solutions,2016,DOI:10.1007/s41062-016-0020-0.
    [56] LIU Y,ZHONG D,CUI B,et al. Study on real-time construction quality monitoring of storehouse surfaces forRCC dams[J]. Automation in Construction,2015,49:100-112.
    [57]韩兴.无人驾驶振动碾的开发及其在长河坝工程中的应用[J].水力发电,2018,44(2):11-14,65.
    [58]张庆龙,刘天云,李庆斌,等.基于闭环反馈控制和RTK-GPS的自动碾压系统[J].水力发电学报,2018,37(5):151-160.
    [59]关涛,崔博,钟登华,等.一种应用于水利工程施工的碾压机无人驾驶纵向控制装置:中国,CN201820046281.8[P]. 2018-10-19.
    [60] WILSON D B,DREESE T L. Advances in computer monitoring and analysis for grouting of dams[C]//US Societyon Dams Annual Conference Proceedings,San Diego,Calif.,Denver,2002.
    [61]李晓超.水利水电工程坝基灌浆施工质量智能控制理论与应用研究[D].天津:天津大学,2018.
    [62]樊贵超,钟登华,任炳昱,等.基于分形理论的坝基裂隙岩体注灰量与导水率关系研究[J].水利学报,2017,48(5):576-587.
    [63]李晓超,钟登华,任炳昱,等.基于模糊RES-云模型的坝基岩体可灌性评价研究[J].水利学报,2017,48(11):1311-1323.
    [64]王晓玲,李瑞金,敖雪菲,等.水电工程大坝基岩三维随机裂隙岩体灌浆数值模拟[J].工程力学,2018,35(1):148-159.
    [65]王晓玲,刘长欣,李瑞金,等.大坝基岩单裂隙灌浆流固耦合模拟研究[J].天津大学学报(自然科学与工程技术版),2017,50(10):1037-1046.
    [66]邓韶辉,王晓玲,敖雪菲,等.大坝基岩帷幕宾汉姆浆液灌浆的三维数值模拟[J].水利学报,2016,47(2):165-172,179.
    [67]闫福根,缪正建,李明超,等.基于三维地质模型的坝基灌浆工程可视化分析[J].岩土工程报,2012,34(3):567-572.
    [68]闫福根,钟登华,任炳昱,等.基于B/S结构的三维交互式灌浆可视化系统的研制及应用[J].水利水电技术,2014,45(11):66-69.
    [69]樊贵超.大坝基础灌浆工程施工质量控制理论与应用研究[D].天津:天津大学,2016.
    [70] LIN P,ZHU X,LI Q,et al. Study on optimal grouting timing for controlling uplift deformation of a super higharch dam[J]. Rock Mechanics&Rock Engineering,2016,49(1):115-142.
    [71] BAI H R,LI J J. Evaluation of grouting effect detection in goaf[J]. Applied Mechanics and Materials,2013,438/439:1080-1083.
    [72] HUANG X G,YANG X L,FANG Y Z. Study on grouting effect evaluation of F4 weathered slot in Xiamen Xiang’an Submarine Tunnel[J]. Applied Mechanics and Materials,2013,256/259:1217-1220.
    [73] LI X,ZHONG D,REN B,et al. Prediction of curtain grouting efficiency based on ANFIS[J]. Bulletin of Engi?neering Geology&the Environment,2017(9):1-29.
    [74] FAN G,ZHONG D,YAN F,et al. A hybrid fuzzy evaluation method for curtain grouting efficiency assessmentbased on an AHP method extended by D numbers[J]. Expert Systems with Applications,2016,44:289-303.
    [75]韩伟,赵存厚.小浪底灌浆工程中开发和应用的灌浆监控系统[J].水利水电技术,2001,32(11):33-34.
    [76] STILLE B,STILLE H,GUSTAFSON G,et al. Experience with the real time grouting control method[J]. Geome?chanics and Tunnelling,2009,2(5):447-459.
    [77] HOULDING S W. 3D Geoscience Modeling:Computer techniques for geologic characterization[M]. Berlin:Springer-Verlag,1994.
    [78] ZHONG D H,LI M C,LIU J. 3D integrated modeling approach to geo-engineering objects of hydraulic and hy?droelectric projects[J]. Science in China Series E:Technological Sciences,2007,50(3):329-342.
    [79] LI M,ZHANG Y,ZHOU S,et al. Refined modeling and identification of complex rock blocks and block-groupsbased on an enhanced DFN model[J]. Tunnelling and Underground Space Technology,2017,62:23-34.
    [80] YUE P,ZHONG D,YAN F,et al. 3-D fracture network modelling in hydropower engineering based on optimalMonte Carlo simulation[J]. Tran sactions of Tianjin University,2017,23(4):351-359.
    [81] ZHANG Y,ZHONG D,WU B,et al. 3D parametric modeling of complex geological structures for geotechnicalengineering of dam foundation based on T-splines[J]. Computer Aided Civil and Infrastructure Engineering,2018,33(7):545-570.
    [82] HAN SEUNG-WOO,LEE SANG-YOUB,DANIEL W,et al. Productivity Evaluation of the Conventional andGPS-Based Earthmoving Systems Using Construction Simulation[C]//Construction Research Congress,2005:1-9.
    [83] NAVON R,SHPATNITSKY Y. Field experiments in automated monitoring of road construction[J]. Journal ofConstruction Engineering and Management,2005,131(4):487-493.
    [84]刘宁.高心墙堆石坝施工场内交通仿真与实时控制研究[D].天津:天津大学,2013.
    [85]钟登华,田耕,关涛,等.基于混沌时序-随机森林回归的堆石坝料加水量预测研究[J].水力发电学报,2018,37(8):1-12.
    [86] BURLINGAME S E. Application of Infrared Imaging to Fresh Concrete:Monitoring Internal Vibration[M]. Cor?nell University,2004.
    [87] GONG J,YU Y,WILLIAMS T P,et al. Real-time 3D concrete vibration effort tracking and visualization with ul?tra-wide-band technologies[C]//Transportation Research Board Annual Meeting,2015.
    [88] TIAN Z,SUN X,SU W,et al. Development of real-time visual monitoring system for vibration effects on freshconcrete[J]. Automation in Construction,2019,98:61-71.
    [89]刘永亮,赖刚,钟桂良,等.基于计算机图形技术的混凝土振捣可视化监控方法:中国,CN104008272A[P]. 2014-08-27.
    [90]钟登华,沈子洋,王佳俊,等.基于实时监控的混凝土坝振捣施工质量动态评价研究[J].水利学报,2018,49(7):775-786.
    [91] JOHNSTON C D. Properties of concrete[J]. Properties of Concrete,1996,36(4):838-844.
    [92]李松辉,张国新,刘毅,等.大体积混凝土防裂智能监控技术及工程应用[J].中国水利水电科学研究院学报,2018,16(1):9-15.
    [93]林鹏,李庆斌,周绍武,等.大体积混凝土通水冷却智能温度控制方法与系统[J].水利学报,2013,44(8):950-957.
    [94] HARRIS P E,BOOKSX I. Planning and control using Microsoft Office Project and PMBOK?guide,fourth edi?tion:including Microsoft Project 2000 to 2007[C]//Eastwood Harris Pty Ltd. 2007.
    [95] ZARN D. MOE/MAR Project management:a(well-informed)bird’s eye view[J]. Healthcare Quarterly,2006,10:27-39.
    [96]李森.溪洛渡水电站坝基渗流监控模型与监测系统研究[D].武汉:长江科学院,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700