用户名: 密码: 验证码:
基于十字及其互补形电磁微结构吸波体的传感特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sensing characteristics of electromagnetic microstructure wave absorber based on cross and complementary microstructures
  • 作者:罗靖 ; 宋健 ; 李敏华
  • 英文作者:LUO Jing;SONG Jian;LI Min-hua;Faculty of Electrical Engineering and Computer Science,Ningbo University;
  • 关键词:人工电磁媒质 ; 吸波 ; 磁传感
  • 英文关键词:metamaterials;;wave absorber;;magnetic sensing
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:宁波大学信息科学与技术学院;
  • 出版日期:2018-12-20
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.323
  • 基金:国家自然科学基金资助项目(61501269);; 浙江省自然科学基金资助项目(LQ16F010002);; 宁波大学王宽诚幸福基金资助项目
  • 语种:中文;
  • 页:CGQJ201901005
  • 页数:5
  • CN:01
  • ISSN:23-1537/TN
  • 分类号:21-25
摘要
基于时域有限积分计算方法和自由空间实验方法,系统地比较分析十字形超材料吸波器(CSMA)和互补十字形超材料吸波器(CCSMA)的电场极化特性,TE/TM模斜入射角敏感特性及吸波机理。CSMA和CCSMA吸波强度/反射率均可应用于TE模入射波角度传感器设计,而对TM模,CCSMA谐振峰发生明显红移,可应用于频率传感/探测器设计。将吸波体表面覆盖不同厚度的待测样品,两种模型谐振频率均随着磁导率增加而红移,CSMA吸波强度呈线性递减,且厚度越大,敏感度越高; CCSMA与磁导率没有依赖关系,仍旧保持最好吸收。
        Using time domain finite integration computation method and free space experimental method,systematically compare and analyze electric field polarization property of cross-shaped metamaterial absorber( CSMA) and complementary CSMA( CCSMA),sensitivity with TE/TM mode oblique incident angles,and wave absorption mechanism. The wave absorptive intensity/reflectivity of both CSMA and CCSMA can be applied in senor design with TE mode incident angles. While for TM mode,harmonic peak of the CCSMA possess obvious red shift,which can be applied in design of frequency sensor/detector. After covered with sample to be tested on the top surface of wave absorber,resonant frequencies of both two models have red shift with increasing of permeability,and intensity of wave absorption of CSMA decreases linearly. The greater the thickness,the higher the sensitivity. CCSMA is dependent with permeability,remaining perfect absorption.
引文
[1] Shelby R A,Smith D R,Schultz S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77.
    [2] Decker M,Klein M W,Wegener M,et al. Circular dichroism of planar chiral magnetic metamaterials[J]. Optics Letters,2007,32(7):856-858.
    [3] Li Y,Shen C,Xie Y,et al. Tunable asymmetric transmission via lossy acoustic metasurfaces[J]. Physical Review Letters,2017,119(3):035501.
    [4] Shen B,Wang P,Polson R,et al. Ultra-high-efficiency metamaterial polarizer[J]. Optica,2014,1(5):356-360.
    [5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters,2000,85(18):3966.
    [6] Liu Y,Zhao X P. Perfect absorber metamaterial for designing lowRCS Patch antenna[J]. IEEE Antennas and Wireless Propagation Letters,2014,13:1473-1476.
    [7] Kowerdziej R,Olifierczuk M,Parka J. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture[J]. Optics Express,2018,26:2443.
    [8] Zheludev N I,Kivshar Y S. From metamaterials to metadevices[J].Nature Materials,2012,11:917-924.
    [9] Landy N I,Sajuyigbe S,Mock J J,et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100(20):207402.
    [10] Watts C M,Liu X L,Padilla W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Optical Materials,2012,24:98-120.
    [11] Jiang W,Ma Y G,Yuan J,et al. Deformable broadband metamaterial absorbers engineered with an analytical spatial KramersKronig permittivity profile[J]. Laser&Photonics Reviews,2017,11(1):1600253.
    [12] Wang B X,Zhai X,Wang C Z,et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics,2015,117:014504.
    [13] Bakir M,Karaaslan M,Unal E,et al. Microwave metamaterial absorber for sensing applications[J]. Opto-Electronics Review,2017,25:318-325.
    [14] Yang J J,Huang M,Sun J. Double negative metamaterial sensor based on microring resonator[J]. IEEE Sensors Journal,2011,11(10):2254-2259.
    [15] Cong L,Tan S,Yahiaoui R,et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:A comparison with the metasurfaces[J]. 2015,106,031107.
    [16] Bakir M,Karaaslan M,Dincer F,et al. Tunable perfect metamaterial absorber and sensor applications[J]. J Mater Sci:Mater Electron,2016,27:120901-12099.
    [17]杨杰,王甲富,屈邵波,等.超材料吸波体的高灵敏度微波传感器[J].空军工程大学学报:自然科学版,2016,17(5):95-99.
    [18]张玉萍,李彤彤,吕欢欢,等.工字形太赫兹超材料吸波体的传感特性研究[J].物理学报,2015,64(11):117801.
    [19]夏洪伟,戴鹏,张玉,等.基于矩形谐振环的微流体传感器[J].传感器与微系统,2016,35(4):86-92.
    [20] Pitchappa P,Ho C P,Kropelnicki P,et al. Dual band complementary metamaterial absorber in near infrared region[J]. Journal of Applied Physics,2014,115:193190.
    [21] Li Z F,Alici K B,Colak E,et al. Complementary chiral metamaterials with giant optical activity and negative refractive index[J].Applied Physics Letters,2011,98:161907.
    [22] Shi J H,Ma H F,Guan C Y,et al. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces[J]. Physical Review B,2014,89:165128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700