用户名: 密码: 验证码:
原位碳纳米管/铝基复合材料的制备与力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites
  • 作者:王雷 ; 尹华 ; 徐润 ; 谭占秋 ; 范根莲 ; 李志强 ; 张荻
  • 英文作者:WANG Lei;YIN Hua;XU Run;TAN Zhanqiu;FAN Genlian;LI Zhiqiang;ZHANG Di;Integration Platform Department,CRRC Changchun Railway Vehicles Co.,Ltd.;State Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University;
  • 关键词:碳纳米管 ; 铝基复合材料 ; 化学气相沉积 ; 片状粉末冶金 ; 力学性能
  • 英文关键词:carbon nanotubes(CNTs);;aluminum matrix composites;;chemical vapor deposition;;flake powder metallurgy;;mechanical property
  • 中文刊名:FMGC
  • 英文刊名:Materials Science and Engineering of Powder Metallurgy
  • 机构:中车长春轨道客车股份有限公司总体研发部;上海交通大学材料科学与工程学院金属基复合材料国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:粉末冶金材料科学与工程
  • 年:2019
  • 期:v.24;No.118
  • 基金:国家自然科学基金资助项目(51671130,51871149);; 国家重点研发计划项目(2016YFB1200506,2017YFB1201105);; 上海市自然科学基金资助项目(15JC1402100,14DZ2261200)
  • 语种:中文;
  • 页:FMGC201901010
  • 页数:6
  • CN:01
  • ISSN:43-1448/TF
  • 分类号:65-69+76
摘要
采用片状粉末冶金技术制备碳纳米管/铝(CNT/Al)复合材料,并研究其力学性能。首先,通过聚合物热解化学气相沉积法(PP-CVD)在微纳铝片表面原位生长碳纳米管制备CNT/Al片状复合粉末,随后对该片状复合粉末进行冷压成形、烧结致密化和挤压变形加工等,制备致密的CNT/Al复合材料块体。实验结果表明,相比铝基体,所制备的1.5%CNT/Al复合材料抗拉强度和模量分别提高了18.5%和23.7%,3.0%CNT/Al复合材料抗拉强度和模量分别提高了31.4%和74.1%,但由于铝基体的细晶强化和位错强化作用,使其塑性分别下降至4.96%和1.5%。
        The carbon nanotube/aluminum(CNT/Al) composites were fabricated by flake powder metallurgy,and investigated the mechanical properties.First,flaky CNT/Al composite powders were prepared by in-situ growth of CNTs on the submicron sized Al flakes with the polymer pyrolysis chemical vapor deposition(CVD) methods.Then the flaky CNT/Al composite powders were compacted,sintered and extruded to fabricate dense bulk CNT/Al composites.The results show that,Compared with the Al matrices,the tensile strength and modulus of the 1.5%CNT/Al composites are increased by 18.5% and 23.7%,while the tensile strength and modulus of the 3%CNT/Al composites are increased by 31.4% and 74.1%.However,their tensile elongations decrease to 4.96% and 1.5%,respectively,which may be owning to the grain refinement and dislocation strengthening mechanisms.
引文
[1]TREACY M J,EBBESEN T,GIBSON J.Exceptionally high Young’s modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
    [2]BAKSHI S,LAHIRI D,AGARWAL A.Carbon nanotube reinforced metal matrix composites-a review[J].International Materials Reviews,2010,55(1):41-64.
    [3]BAKSHI S R,AGARWAL A.An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J].Carbon,2011,49(2):533-544.
    [4]PARK J G,KEUM D H,LEE Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J].Carbon,2015,95:690-698.
    [5]LIU Z,XU S,XIAO B,et al.Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites[J].Composites Part A:Applied Science and Manufacturing,2012,43(12):2161-2168.
    [6]JIANG L,LI Z,FAN G,et al.The use of flake powder metallurgy to produce carbon nanotube(CNT)/aluminum composites with a homogenous CNT distribution[J].Carbon,2012,50(5):1993-1998.
    [7]CHA S I,KIM K T,ARSHAD S N,et al.Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J].Advanced Materials,2005,17(11):1377-1381.
    [8]HE C,ZHAO N,SHI C,et al.An approach to obtaining homogeneously dispersed carbon nanotubes in al powders for preparing reinforced Al-atrix composites[J].Advanced Materials,2007,19(8):1128-1132.
    [9]CAO L,LI Z,FAN G,et al.The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol[J].Carbon,2012,50(3):1057-1062.
    [10]TANG J,FAN G,LI Z,et al.Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical vapor deposition[J].Carbon,2013,55:202-208.
    [11]LI Z,JIANG L,FAN G,et al.High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders[J].Micro&Nano Letters,2010,5(6):379-381.
    [12]赵臻,周波.柠檬酸络合法合成纳米陶瓷的研究进展[J].辽宁化工,2014(3):252-255.ZHAO Zhen,ZHOU Bo.Research progress in synthesis of nano ceramics by citric acid complex method[J].Liaoning Chemical Industry,2014(3):252-255.
    [13]DRESSELHAUS M S,DRESSELHAUS G,SAITO R,et al.Raman spectroscopy of carbon nanotubes[J].Physics Reports,2005,409(2):47-99.
    [14]徐润,李忻达,李志强,等.聚合物热解法制备碳纳米管/铝复合粉末及其反应动力学研究[J].无机材料学报,2014,29(7):687-694.XU Run,LI Xinda,LI Zhiqiang,et al.Preparation and reaction kinetics of carbon nanotubes/aluminum composite powders using polymer pyrolysis method[J].Journal of Inorganic Materials,2014,29(7):687-694.
    [15]GRUJICIC M,CAO G,GERSTEN B.Optimization of the chemical vapor deposition process for carbon nanotubes fabrication[J].Applied surface Science,2002,191(1/4):223-239.
    [16]GRUJICIC M,CAO G,GERSTEN B.An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes[J].Materials Science and Engineering B,2002,94(2/3):247-259.
    [17]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.SHEN Guanlin,HU Gengkai.Mechanics of Composites[M].Beijing:Tsinghua University Press,2006.
    [18]MOKDAD F,CHEN D,LIU Z,et al.Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite[J].Carbon,2016,104:64-77.
    [19]CHOI H,SHIN J,BAE D.Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes[J].Composites Science and Technology,2011,71(15):1699-1705.
    [20]DONG S H,ZHOU J Q,HUI D,et al.Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites[J].Compos Pt A-Appl Sci Manuf,2015,68,356-364.
    [21]XU R,FAN G,TAN Z,et al.Back stress in strain hardening of carbon nanotube/aluminum composites[J].Materials Research Letters,2018,6(2):113-120.
    [22]YOO S,HAN S,KIM W.Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J].Scripta Materialia,2013,68(9):711-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700