用户名: 密码: 验证码:
鹰嘴芒皮渣水不溶性膳食纤维提取工艺优化及理化性质测定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Extraction Process and Determination of Physicochemical Properties of Water Insoluble Dietary Fiber From Golek Peel
  • 作者:薛山 ; 刘泽明
  • 英文作者:XUE Shan;LIU Zeming;College of Biological Science and Technology,Minnan Normal University;Engineering Research Center,Fujian Province for Fungal Industry;
  • 关键词:鹰嘴芒皮渣 ; 水不溶膳食纤维 ; 酶法 ; 工艺优化 ; 理化性质
  • 英文关键词:golek peel;;water insoluble dietary fiber;;enzymatic method;;process optimization;;physicochemical properties
  • 中文刊名:BFYY
  • 英文刊名:Northern Horticulture
  • 机构:闽南师范大学生物科学与技术学院;菌物产业福建省高校工程研究中心;
  • 出版日期:2019-04-15
  • 出版单位:北方园艺
  • 年:2019
  • 期:No.430
  • 基金:闽南师范大学博士科研启动基金资助项目(2006L21513);; 2018年福建省中青年教师教育科研资助项目(JT180307);; 大闽食品(漳州)有限公司博士后项目基金资助项目;; 福建省高校杰出青年科研人才培育计划资助项目;; 供给侧结构改革与新时代区域经济平衡发展研究资助项目(4105/J11815)
  • 语种:中文;
  • 页:BFYY201907019
  • 页数:8
  • CN:07
  • ISSN:23-1247/S
  • 分类号:120-127
摘要
以鹰嘴芒皮渣为试材,采用酶法提取鹰嘴芒皮渣中水不溶性膳食纤维(insoluble dietary fiber,IDF),在液料比、糖化酶温度、糖化酶酶解时间、蛋白酶温度、蛋白酶酶解时间和蛋白酶酶解pH 6个单因素试验的基础上,采用Box-Behnken响应面法优化得到了最佳工艺,并对提取的IDF进行理化性质测定,为芒果皮渣的精深加工提供参考。结果表明:液料比、糖化酶作用温度和蛋白酶作用温度3个因素对试验结果影响较为显著。进一步通过响应面试验结果得到IDF的最佳提取工艺为液料比20.5 mL·g~(-1)、糖化酶温度63℃、蛋白酶温度51℃,此条件下鹰嘴芒IDF的实际得率为28.56%。此外,所提IDF持水力、持油力和膨胀力分别为5.47 g·g~(-1)、1.23 g·g~(-1)和4.69 mL·g~(-1)。IDF在0.1~0.5 mg·mL~(-1)具有良好的·OH清除率(IC_(50)为0.262 mg·mL~(-1)),且呈现出明显的量效关系,是一种优良的抗氧化膳食纤维。
        Using the golek peel as material,the enzymatic method was used to extract the water insoluble dietary fiber(IDF) from the peel.On the basis of six single factors(liquid-solid ratio,glycosylase temperature,glycosylase digestion time,protease temperature,protease digestion time,protease pH),the optimum process was optimized by box-behnken response surface method,and the physicochemical properties of the IDF were determined,to provide reference for deep-processing for golek peel.The results showed that among the factors,liquid-solid ratio,the temperature of saccharifying enzyme,and the temperature of protease had more significant influence on the experimental results.The best extraction process of IDF by further response surface experiment was as follows,the liquid-solid ratio 20.5 mL·g~(-1),the temperature of saccharifying enzyme 63 ℃ and temperature of protease 51 ℃.Under these conditions,the actual IDF yield of mango peel was 28.56%.In addition,the water holding capacity of the IDF was 5.47 g·g~(-1),oil holding capacity was 1.23 g·g~(-1),expansion force was 4.69 mL·g~(-1).Besides,IDF had a good ·OH scavenging rate(IC_(50) was 0.262 mg·mL~(-1)) from 0.1 to 0.5 mg·mL~(-1),and it had obvious quantitative effect relationship,which is an excellent antioxidant dietary fiber.
引文
[1] 林丽静,黄晓兵,龚霄,等.超微粉碎对芒果皮理化特性的影响[J].食品工业,2017(4):152-154.
    [2] 钟勇,黄建峰,罗睿雄.海南省芒果产业化发展现状、存在问题及对策[J].中国热带农业,2016,70:19-22.
    [3] 铁万祝,罗关兴,王友富,等.我国芒果产业发展概况与主要问题[J].中国热带农业,2013(5):16-19.
    [4] 黄晓兵,彭芍丹,李积华,等.发酵法制备芒果皮膳食纤维工艺研究[J].食品工业科技,2017(15):153-156,163.
    [5] 李建强,陆利霞,熊晓辉.芒果皮中功效成分应用研究进展[J].食品研究与开发,2012,33(1):176-178.
    [6] AJILA C M,RAO U J S P.Mango peel dietary fibre:Composition and associated bound phenolics[J].Journal of Functional Foods,2013,5(1):444-450.
    [7] 陈多谋,文攀,杭瑜瑜,等.三种芒果果皮及果肉中膳食纤维的组分研究[J].食品研究与开发,2016,37(8):9-14.
    [8] 郑毅,伍斌,邓建梅.酶-重量法测定不同品种芒果皮中膳食纤维的含量[J].热带农业工程,2013,37(1):4-7.
    [9] 薛山,何小宝.葡萄皮渣中可溶性抗氧化膳食纤维提取工艺及羟自由基清除作用[J].中国食品添加剂,2017(9):160-170.
    [10] 薛山.柑橘皮渣中非水溶性抗氧化膳食纤维提取工艺优化[J].食品与机械,2016,32(8):151-155.
    [11] 谌小立,赵国华.抗氧化膳食纤维研究进展[J].食品科学,2009,30(5):291-294.
    [12] 贾桂云,吴凌志,羊传慧,等.芒果和番石榴的果皮、果肉多酚含量测定及抗氧化性比较分析[J].海南师范大学学报(自然科学版),2018,31(1):38-43.
    [13] 胡会刚,董晨,胡玉林,等.芒果加工副产物的生物活性物质含量与抗氧化能力研究[J].广东农业科学,2015(24):118-123.
    [14] LARRAURI J A,RUPEREZ P,BORROTO B,et al.Mango peels as a new tropical fibre:Preparation and charaterization[J].LWT-Food Science Technology,1996,29(8):729-733.
    [15] 曾庆梅,杨毅,殷允旭,等.梨渣水不溶性膳食纤维的提取工艺研究[J].食品科学,2008(8):275-278.
    [16] 高荫榆,晁红娟,丁红秀,等.毛竹叶特种膳食纤维制备及特性的研究[J].食品科学,2007,28(12):200-204.
    [17] 宋慧,苗敬芝,董玉玮,等.超声结合酶法提取花生粕中水溶性膳食纤维及其功能性研究[J].食品研究与开发,2014,35(5):44-48.
    [18] 王磊,袁芳,向俊,等.响应面法优化高压均质提取椪柑渣中可溶性膳食纤维及抗氧化活性研究[J].中国食品学报,2015,15(5):82-89.
    [19] 邵佩兰,徐明.制备麦麸膳食纤维的影响因素研究[J].食品与发酵工业,2003,29(5):77-79.
    [20] 包怡红,冯雁波.响应面试验优化红松松仁膳食纤维制备工艺及其理化性质分析[J].食品科学,2016,37(14):11-17.
    [21] 蒲立柠,陈光静,阚建全.响应面试验优化青稞麸皮薏仁红曲霉发酵工艺[J].食品科学,2017,38(2):264-270.
    [22] 李凤.椰子渣不溶性膳食纤维酶法提取[J].食品科学,2008,29(10):215-217.
    [23] 胡雪琼,陈笑芬,邵海艳.双酶法提取马铃薯渣中水不溶性膳食纤维的工艺研究[J].食品科技,2015,40(8):167-170.
    [24] 冼惠形,夏杏洲,袁霞,等.菠萝皮渣水不溶性膳食纤维对油脂胆固醇胆酸钠及NO2-的吸附作用[J].农产品加工(学刊),2012(9):30-33.
    [25] 李黎,王宇辉.响应面法优化发酵法提取枣渣中不溶性膳食纤维提取工艺优化[J/OL].中国食品添加剂,2017(9):140-145.
    [26] 李建周,陈晓华,罗思诗.豆渣中水不溶性膳食纤维的提取及性质研究[J].食品研究与开发,2017,38(7):29-33.
    [27] SáNCHEZ-ALONSO I,JIMéNEZ-ESCRIG A,SAURA-CALITO F,et al.Antioxidant protection of white grape pomace on restructured fish products during frozen storage[J].LWT-Food Science and Technology,2008,41(1):42-50.
    [28] VERGARA V N,GRANADOS P E,AGAMA A E,et al.Fibre concentrate from mango fruit:Characterization,associated antioxidant capacity and application as a bakery product ingredient[J].LWT-Food Science and Technology,2007,40(4):722-729.
    [29] SANCHEZ-ALONSO I,BORDERIAS A J,LARSSON K,et al.Inhibition of hemoglobin-mediated oxidation of regular and lipid-fortified washed cod mince by a white grape dietary fiber[J].Journal of Agricultural and Food Chemistry,2007,55(13):5299-5305.
    [30] SáNCHEZ-ALONSO I,BORDEíAS A J.Technological effect of grape antioxidant dietary fibre added to minced fish muscle[J].International Journal of Food Science and Technology,2008,43(6):1009-1018.
    [31] 周小理,钱韻芳,周一鸣.植物性膳食纤维抗氧化活性的研究与应用[J].食品与机械,2010,26(3):158-160.
    [32] 王思远,刘学铭,陈智毅,等.富含膳食纤维的柚皮粉制备及其特性研究[J].现代食品科技,2014,30(11):170-174.
    [33] 刘铭,李秀婷,潘凌风,等.芒果皮可溶性膳食纤维的提取及性质研究[J].中国食品添加剂,2014(1):81-87.
    [34] GARCIA-MENDOZA M P,PAULA J T,PAVIANI L C,et al.Extracts from mango peel by-product obtained by supercritical CO2,and pressurized solvent processes[J].LWT-Food Science and Technology,2015,62(1):131-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700