用户名: 密码: 验证码:
Na_3AlF_6对微米铝粉在CO_2气氛中着火燃烧特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Na_3AlF_6 on Ignition and Combustion Characteristics of Micron-Sized Aluminum Powder in CO_2
  • 作者:石伟 ; 孙运兰 ; 朱宝忠 ; 陈颖
  • 英文作者:SHI Wei;SUN Yun-lan;ZHU Bao-zhong;CHEN Ying;School of Energy and Environment,Anhui University of Technology;School of Petroleum Engineering,Changzhou University;
  • 关键词:六氟铝酸钠 ; 微米铝粉 ; 点火 ; 燃烧特性
  • 英文关键词:Sodium fluoroaluminate;;Micron-sized aluminum powders;;Ignition;;Combustion characteristics
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:安徽工业大学能源与环境学院;常州大学石油工程学院;
  • 出版日期:2019-03-01 09:38
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.265
  • 基金:国家自然科学基金(51876187;51376007)
  • 语种:中文;
  • 页:TJJS201907027
  • 页数:9
  • CN:07
  • ISSN:11-1813/V
  • 分类号:225-233
摘要
为了改善铝粉在二氧化碳气氛中的着火特性和燃烧效率,采用自行设计的管式炉研究了六氟铝酸钠对铝/二氧化碳着火燃烧特性的影响。采用高速摄影系统记录了样品着火燃烧现象,同时收集反应后的产物通过X射线衍射和扫描电镜技术、化学分析方法对其成分、产物形貌和燃烧效率进行了分析。研究结果表明,六氟铝酸钠能够显著降低铝粉的点火延迟时间,与未添加六氟铝酸钠的样品相比,加入六氟铝酸钠后,样品的点火延迟时间降低了18s左右;六氟铝酸钠的加入还能抑制燃烧产物凝聚并提高铝粉的燃烧效率,随六氟铝酸钠添加量增加,燃烧效率呈现先增加后降低的趋势,添加了六氟铝酸钠的样品的最高燃烧效率为71.82%,与未添加六氟铝酸钠的样品相比提升了21.1%。
        In order to improve the ignition and combustion characteristics and combustion efficiency of aluminum powder in carbon dioxide atmosphere,a self-designed tube furnace was used to investigate the effects of sodium fluoroaluminate on the ignition and combustion characteristics of aluminum/carbon dioxide. The highspeed photographic system was used to record the ignition and combustion of samples. The collected products were analyzed by X-ray diffraction,scanning electron microscope technique and chemical analysis method to obtain their composition,product morphology and combustion efficiency. The results showed that sodium fluoroaluminate can significantly reduce the ignition delay time of aluminum powder. Comparing with the sample without sodium fluoroaluminate,the ignition delay time of the sample reduced by about 18 s after adding sodium fluoroaluminate. The addition of sodium fluoroaluminate can also inhibit the coagulation of combustion products and improve the combustion efficiency of aluminum powder. The combustion efficiency first increased then decreased as sodium fluoroaluminate content increased. The highest combustion efficiency of the sample added with sodium fluoroaluminate was 71.82%,which was 21.1% higher than that of the sample without sodium fluoroaluminate.
引文
[1]胡松启,李葆萱.固体火箭发动机燃烧基础[M].西安:西北工业大学出版社,2015.
    [2]王克秀.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983.
    [3]谭惠民.固体推进剂化学与技术[M].北京:北京理工大学出版社,2015.
    [4]Mohan S,Furet L,Dreizin E L.Aluminum Particle Ignition in Different Oxidizing Environments[J].Combustion and Flame,2010,157(7):1356-1363.
    [5]刘鑫,刘佩进,关昱,等.复合推进剂中铝的燃烧实验研究方法[J].固体火箭技术,2015,38(6):833-836.
    [6]Sarou-Kanian V,Rifflet J C,Millot F,et al.Aluminum Combustion in Wet and Dry CO2:Consequences for Surface Reactions[J].Combustion and Flame,2006,145(1):220-230.
    [7]严启龙,张晓宏,李宏岩,等.固体推进剂中铝粉氧化过程及其燃烧效率影响因素[J].化学推进剂与高分子材料,2011,9(4):20-26.
    [8]Popenko E M,Gromov A A,Shamina Y Y,et al.Combustion of Agglomerated Ultrafine Aluminum Powders in Air[J].Combustion,Explosion and Shock Waves,2002,38(6):665-669.
    [9]Shafirovich E Y,Shiryaev A A,Goldshleger U I.Magnesium and Carbon Dioxide-A Rocket Propellant for Mars Missions[J].Journal of Propulsion and Power,1993,9(2):197-203.
    [10]王婷.包覆纳米铝粉在二氧化碳气氛中的热反应特性及反应动力学[D].马鞍山:安徽工业大学,2016.
    [11]Lee Y M,Choi N S,Park J H,et al.Electrochemical Performance of Lithium/Sulfur Batteries with Protected Li Anodes[J].Journal of Power Sources,2003,119:964-972.
    [12]王传华.铝基水反应活性材料制备制备及性能研究[D].北京:北京理工大学,2015.
    [13]李上文,赵凤起,袁潮,等.国外固体推进剂研究与开发的趋势[J].固体火箭技术,2002,25(2):36-42.
    [14]Trunov M A,Schoenitz M,Dreizin E L.Ignition of Aluminum Powders under Different Experimental Conditions[J].Propellants,Explosives,Pyrotechnics,2010,30(1):36-43.
    [15]Firmansyah D A,Sullivan K,Lee K S,et al.Microstructural Behavior of the Alumina Shell and Aluminum Core Before and after Melting of Aluminum Nanoparticles[J].Journal of Physical Chemistry C,2012,116(1):404-411.
    [16]Baschung B,Grune D,Licht H H,et al.Combustion of Energetic Materials[M].New york:Begell House Inc,2002:219-225.
    [17]夏强,李疏芬,王桂兰,等.超细铝粉在AP/HTPB推进剂中的燃烧研究[J].固体火箭技术,1994,17(4):35-42.
    [18]汪亮,刘华强,刘敏华.包覆铝粉破裂燃烧的实验观测[J].固体火箭技术,1999,22(2):40-44.
    [19]程志鹏,杨毅,王毅.纳米镍包覆超细铝复合粉末的氧化性能[J].物理化学学报,2008,24(1):152-156.
    [20]Mulamba O,Pantoya M L.Exothermic Surface Chemistry on Aluminum Particles Promoting Reactivity[J].Applied Surface Science,2014,315(1):90-94.
    [21]Deluca L T,Galfetti L,Colombo G,et al.Microstructure Effects in Aluminized Solid Rocket Propellants[J].Journal of Propulsion and Power,2010,26(4):724-732.
    [22]Verma S,Ramakrishna P A.Effect of Specific Surface Area of Aluminum on Composite Solid Propellant Burning[J].Journal of Propulsion and Power,2013,29(5):1200-1206.
    [23]高东磊,张炜,朱慧,等.纳米铝粉在复合推进剂中的应用[J].固体火箭技术,2007,30(5):420-423.
    [24]刘磊力,李凤生,杨毅,等.纳米金属和复合金属粉对AP/HTPB推进剂热分解的影响[J].推进技术,2005,26(5):458-461.(LIU Lei-li,LI Feng-sheng,YANG Yi,et al.Effect of Metal and Composite Metal Nano Powders on the Thermal Decomposition of HTPBPropellant[J].Journal of Propulsion Technology,2005,26(5):458-461.)
    [25]张伟,谢五喜,樊学忠,等.纳米铝粉对少烟NEPE推进剂燃烧性能的影响[J].固体火箭技术,2014,(4):516-520.
    [26]DeLuca L T,Galfetti L,Severini F,et al.Burning of Nano-Aluminized Composite Rocket Propellants[J].Combustion Explosion and Shock Waves,2005,41(6):680-692.
    [27]Vasilev A V,Gorbunov V V,Shidlovskii A A.The Effect of Certain Additives on Critical Diameter and Combustion Rates of Mixtures of Aluminum with Gelled Water[R].AD-A000210,1974.
    [28]Zhu B Z,Li F,Sun Y L,et al.The Effects of Different Additives on the Ignition and Combustion Characteristics of Micron-Sized Aluminum Powder in Steam[J].Energy&Fuels,2017,31(8):8674-8684.
    [29]Li F,Zhu B Z,Sun Y L,et al.Hydrogen Generation by Means of the Combustion of Aluminum Powder/Sodium Borohydride in Steam[J].International Journal of Hydrogen Energy,2016,42:3804-3812.
    [30]Skrovan J,Alfantazi A,Troczynski T.Enhancing Aluminum Corrosion in Water[J].Journal of Applied Electrochemistry,2009,39(10):1695-1702
    [31]Dupiano P,Stamatis D,Dreizin E L.Hydrogen Production by Reacting Water with Mechanically Milled Composite Aluminum-Metal Oxide Powders[J].International Journal of Hydrogen Energy,2011,36(8):4781-4791.
    [32]Liu Y,Wang X,Liu H,et al.Effect of Salts Addition on the Hydrogen Generation of Al-LiH Composite Elaborated by Ball Milling[J].Energy,2015,89:907-913.
    [33]Soler L,Candela A M,Macanás J,et al.In Situ Generation of Hydrogen from Water by Aluminum Corrosion in Solutions of Sodium Aluminate[J].Journal of Power Sources,2009,192(1):21-26.
    [34]徐君莉,石忠宁,高炳亮,等.氧化铝在熔融冰晶石中的溶解[J].东北大学学报(自然科学版),2003,24(9):832-834.
    [35]谢刚,邱竹贤.氧化铝溶解在冰晶石熔体中的结构[J].昆明工学院学报,1991,16(6):30-34.
    [36]杨振海,高炳亮,徐宁,等.熔融冰晶石中氧化铝的溶解(摄影研究)[J].东北大学学报(自然科学版),1999,20(4):398-400.
    [37]姜艳丽,唐鑫,高凡.冰晶石-氧化铝熔盐的分子动力学研究[J].原子与分子物理学报,2016,33(2):325-329.
    [38]徐宁,杨振海,邱竹贤,等.氧化铝在冰晶石熔体中溶解的动力学模型[J].东北大学学报(自然科学版),1999,20(3):315-318.
    [39]邱竹贤.铝电解原理与应用[M].徐州:中国矿业大学出版社,1998.
    [40]D Phan Xuan,霍庆发,程金秀.氟化物添加剂对冰晶石中氧化铝熔解热化学特性的影响[J].轻金属,1976(2):45-51
    [41]Glimac N,Krier H,Bazyn T,et al.Temperature Measurement of Aluminum Particles Burning in Carbon Dioxide[J].Combustion Science&Technology,2005,177(3):485-511.
    [42]Rossi S,Dreizin E L,Law C K.Combustion of Aluminum Particles in Carbon Dioxide[J].Combustion Science&Technology,2001,164(1):209-237.
    [43]Ohkura Y,Rao P M,Zheng X L.Flash Ignition of Al Nanoparticles:Mechanism and Applications[J].Combustion and Flame,2011,158(12):2544-2548.
    [44]Levitas V I,Asay B W,Son S F,at al.Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal[J].Journal of Applied Physics,2007,101(8).
    [45]Levitas V I,Pantoya M L,Dikici B.Melt Dispersion versus Diffusive Oxidation Mechanism for Aluminum Nanoparticles:Critical Experiments and Controlling Parameters[J].Applied Physics Letters,2008,92(1).
    [46]Sarou-Kanian V,Rifflet J C,Millot F.On the Role of Carbon Dioxide in the Combustion of Aluminum Droplets[J].Combustion Science&Technology,2005,177(12):2299-2326.
    [47]杨振海,高炳亮,邱竹贤.金属铝在冰晶石氧化铝熔液中的溶解度测定[J].东北大学学报(自然科学版),2001,22(1):64-66.
    [48]李卫红,徐宁,邱竹贤.氧化铝电解质体系中的胶体[J].轻金属,1998,(6):31-37.
    [49]Mohan S,Dreizin E L.Aluminum Particle Ignition in Mixed Environments[R].AIAA 2009-637.
    [50]Ryabkov Y I,Lekanova T L,Sporsheva T M.Reduction of Aluminum Oxide by Carbon at Low Pressures[J].Russian Journal of Physical Chemistry,2001,75(8):1237-1241.
    [51]Zhu B Z,Li F,Sun Y L,et al.The Effects of Additives on the Combustion Characteristics of Aluminum Powder in Steam[J].RSC Advances,2017,7(10):5725-5732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700