用户名: 密码: 验证码:
不同汇流关系LID降雨控制方式分析检验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and test on rainfall control modes of LID facilities with different confluence types
  • 作者:申红彬 ; 徐宗学 ; 张书函 ; 李其
  • 英文作者:SHEN Hongbin;XU Zongxue;ZHANG Shuhan;LI Qijun;North China University of Water Resources and Electric Power;College of Water Sciences, Beijing Normal University,Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology;Beijing Water Science and Technology Institute,Beijing Engineering Research Center for Non-Conventional Water Resources Utilization and Water Saving;
  • 关键词:LID ; 汇流关系 ; 串联并联 ; 降雨控制方式 ; 监测检验
  • 英文关键词:LID;;confluence relationship;;series and parallel;;rainfall control mode;;monitoring and examination
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:华北水利水电大学;北京师范大学水科学研究院城市水循环与海绵城市技术北京市重点实验室;北京市水科学技术研究院北京市非常规水资源开发利用与节水工程技术研究中心;
  • 出版日期:2019-05-22 09:37
  • 出版单位:水利学报
  • 年:2019
  • 期:v.50;No.512
  • 基金:国家科技重大科技专项(2013ZX07304-001)
  • 语种:中文;
  • 页:SLXB201905006
  • 页数:11
  • CN:05
  • ISSN:11-1882/TV
  • 分类号:48-58
摘要
雨水径流总量控制作为城市低影响开发(Low Impact Development,LID)重要目标之一,对降雨选用何种控制模式(方式)是个重要的问题。本文通过理论分析与实际监测检验,对不同汇流关系下LID降雨控制方式的区别进行了分析研究。理论分析结果表明,LID设施与不透水地表之间依汇流方式不同可以分为串联、并联两种关系形式,分别对应不同的降雨控制方式。对于小于设计降雨量的降雨,前者为场次控制,后者为部分控制;对于大于设计降雨量的降雨,两者均为部分控制。从各场次降雨控制总量来看,前者略大于后者;从对地下水涵养、径流水质改善和流量峰值削减角度而言,前者效果要优于后者。因此,对于LID雨水径流控制效果的检验,不能仅限于降雨总量控制率的统计,还需分析判别LID降雨控制的方式,尽量选用串联的汇流形式。以北京未来科技城为例,对其LID雨水径流控制效果与方式进行了分析检验。结果表明,虽然监测期内雨水总量控制率可以达到≥85%的目标,但对小于设计降雨量的场次降雨未能实现场次控制,原因在于区内不透水车道与两侧绿化带未按规划实现串联布置,后期有待加以改进。
        The volume of rainfall control is one of the most important objectives of LID(Low Impact Development). For different confluence relationships,the rainfall control modes are different. Theoretical analysis shows that there are two kinds of confluence relationships between LID facilities and impervious surface:series and parallel. For the individual rainfall events with the value smaller than the designed rainfall,the rainfall control modes are event capture for series system and partial capture for parallel system. The total volume of rainfall captured by series system is slightly bigger than the parallel system. Moreover,the series system is more favorable to water quality improvement and peak flow reduction. Therefore the examination on rainfall control effects includes not only the volume capture ratio of rainfall but also the rainfall control mode. The monitoring and examination steps of rainfall control mode were proposed and the Future Science& Technology Park in Beijing was selected for case study. The examination results showed that the volume capture ratio of rainfall was greater than 85%,but the rainfall control mode for the designed rainfall was partial capture,as the impermeable roads were not connected with the LID facility. In view of the above fact,the suggestions for later improvement were proposed.
引文
[1]匡文慧,刘纪远,陆灯盛.京津唐城市群不透水地表增长格局以及水环境效应[J].地理学报,2011,66(11):1486-1496.
    [2]徐光来,许有鹏,徐宏亮.城市化水文效应研究进展[J].自然资源学报,2010,25(12):2171-2178.
    [3] ARNOLD C L,GIBBONS C J. Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of American Planning Association,1996(2):243-258.
    [4] ELVIDGE C D,TUTTLE B T,SUTTON P C,et al. Global distribution and density of constructed impervious surface[J]. Sensors,2007(7):1962-1979.
    [5] USA EPA. Low impact development(LID):A literature review[R]. Washington D C:United States Environmental Protection Agency,2000,EPA-841-B-00-005.
    [6] LEE J,MOON H,KIM T,et al. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system[J]. Environmental Pollution,2013,181(6):257-261.
    [7]唐双成,罗纨,贾忠华,等.雨水花园对暴雨径流的削减效果[J].水科学进展,2015,26(6):788-794.
    [8] DARKE J,BRADFORD A,VAN SETERS T. Hydrologic performance of three partial-infiltration permeable pavements in a cold climate over low permeability soil[J]. Journal of Hydrologic Engineering,2014,19(9):04014016.
    [9] DELETIC A,FLETCHER T D. Performance of grass filters used for storm water treatment--a field and modelling study[J]. Journal of Hydrology,2006,317(3):261-275.
    [10]张书函,丁跃元,陈建刚.城市雨水利用工程设计中的若干关键技术[J].水利学报,2012,43(3):308-314.
    [11]住房与城乡建设部.海绵城市建设技术指南——低影响开发雨水系统构建(试行)[S]. 2014.
    [12]王家彪,沈子寅,赵建世,等.关于低影响开发设施设计降雨量确定方法的讨论[J].中国给水排水,2019,35(1):127-133.
    [13] GUO J C Y,URBONAS B. Maximized detention volume determined by runoff capture ratio[J]. Journal of Water Resources Planning&Management,1996,122(1):33-39.
    [14]王家彪,赵建世,沈子寅,等.关于海绵城市两种降雨控制模式的讨论[J].水利学报,2017,48(12):1490-1498.
    [15]席广朋,王建龙,赵梦圆,等.城市雨水总量控制方法及应用[J].中国给水排水,2017,33(16):1-7.
    [16]唐颖. SUSTAIN支持下的城市降雨径流最佳管理BMP规划研究[D].北京:清华大学,2010.
    [17]潘国庆,车伍,李俊奇,等.中国城市径流污染控制量及其设计降雨量[J].中国给水排水,2008,24(22):25-29.
    [18]李俊奇,林翔,王文亮,等.国内外雨水径流总量控制指标统计方法对比剖析[J].中国给水排水,2018,34(8):11-16.
    [19] LINSELY P K,KOHLER M A,PAULUS J L,et al. Hydrology for Engineers[M]. New York:McGraw-Hill Book Company,1982.
    [20]北京市水利科学研究所.北京未来科技城再生水及雨水综合利用规划设计方案[R]. 2012.
    [21]申红彬,张书函,徐宗学.北京未来科技城LID分块配置与径流削减效果监测[J].水利学报,2018,49(8):937-944.
    [22]张文华.流域分块移滞汇流模型[J].水利学报,1981(3):49-56.
    [23]孔凡哲,李燕,朱朝霞.一种基于面积-时间关系的单位线分析方法[J].中国矿业大学学报,2007,36(3):356-359.
    [24]唐郑亮,许有鹏,于瑞宏.流域汇流的等流时单位线方法初探[J].南京大学学报(自然科学版),2008,44(3):304-309.
    [25]舒栋才,程根伟,林三益.基于DEM的岷江上游数字流域的离散化[J].四川大学学报(工程科学版),2004,36(6):6-11.
    [26]万晓丹,曹京京,申红彬. Clark单位线法的分布式改进[J].长江科学院院报,2018,35(5):23-26.
    [27]申红彬,徐宗学,李其军,等.基于Nash瞬时单位线法的渗透坡面汇流模拟[J].水利学报,2016,47(5):708-713.
    [28]芮孝芳.水文学原理[M].北京:高等教育出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700