用户名: 密码: 验证码:
吸气式飞行器进气道唇口三维激波/激波干扰
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional shock/shock interaction of airbreathing vehicle's inlet lip
  • 作者:姜宝森 ; 张亮 ; 李俊红 ; 施家桐
  • 英文作者:JIANG Baosen;ZHANG Liang;LI Junhong;SHI Jiatong;China Academy of Aerospace Aerodynamics,China Aerospace Science and Technology Corporation;
  • 关键词:激波/激波干扰 ; 进气道唇口 ; 拼接网格 ; 逆距离加权插值 ; 热流
  • 英文关键词:shock/shock interaction;;inlet lip;;patched grid;;inverse-distance interpolation;;heat flux
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:中国航天科技集团有限公司中国航天空气动力技术研究院;
  • 出版日期:2019-04-09 11:55
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 语种:中文;
  • 页:HKDI201904013
  • 页数:8
  • CN:04
  • ISSN:11-2297/V
  • 分类号:91-98
摘要
对吸气式飞行器进气道唇口处三维曲面激波/弓形激波干扰流场进行数值模拟,利用典型三维气动干扰试验对采用的数值计算方法进行验证。利用拼接网格技术及逆距离加权插值方法获得入口处流场的非守恒变量,作为激波干扰研究的入口边界条件。数值模拟表明,唇口处激波干扰流动的三维效应十分显著,曲面激波与弓形激波产生斜交,尽管唇口前缘半径很小,但Edney提出的6类激波干扰类型可能沿唇口展向方向同时存在;第Ⅲ和Ⅳ类激波/激波干扰的诱导使得唇口热流分布异常严酷;激波相交处形成斜向"伤疤"状局部高热流条带,峰值热流达到参考热流的4~6倍,可能引起唇口结构的局部烧蚀或破坏。
        Numerical simulation on three-dimensional interaction between curved oblique shock wave and bow shock wave was studied under the condition of small radius of the cylinder.The numerical method validation was carried out by using the typical three-dimensional aerodynamic interference model.The entrance boundary condition of inlet was obtained by the application of patched grid technology and inverse-distance interpolation method.It indicated that three-dimensional feature of the interactions was strong as the curved oblique shock and bow shock intersected at small angle and six types of shock-shock interactions proposed by Edney may exist over the lip along the lateral direction,although the radius of cowl lip was small.Thermal environment induced by the typeⅢand typeⅣshock-shock interactions was severe.And the shape of the high heat flux region was like a"scar"on the cowl lip.Heat flux of the scar was 4 to 6 times of the reference heat flux under the same flow condition.This may lead to the ablation or structure damage of the cowl lip.
引文
[1]WATTS J D.Flight experiment with shock impingement and interference heating on the X-15-2research airplane[R].NASA TN D-4813,1968.
    [2]EDNEY B.Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock[R].Stockholm:Aeronautical Research Institute of Sweden,FFA-115,1968.
    [3]KOJI M,KOZO F.Numerical analysis of three-dimensional shock/shock interactions and the aerodynamic heating[R].AIAA-99-0144,1999.
    [4]MICHELLE L J,SCOTT A B.Thermographic phosphor measurements of shock-shock interactions on a swept cylinder[R].Thermal and Fluid Analysis Workshop(TFAWS),NASA Langley Research Center,2013.
    [5]吴文堂,洪延姬,王殿恺,等.斜激波与弓形激波相互作用的彩虹纹影实验研究[J].推进技术,2015,36(5):671-677.WU Wentang,HONG Yanji,WANG Diankai,et al.Experimental investigation on oblique shock and bow shock interaction with rainbow schlieren[J].Journal of Propulsion Technology,2015,36(5):671-677.(in Chinese)
    [6]潘沙,田正雨,冯定华,等.超燃冲压发动机唇口气动热计算研究与分析[J].航空动力学报,2009,24(9):2096-2100.PAN Sha,TIAN Zhengyu,FENG Dinghua,et al.Computation and analysis of aeroheating of scramjet inlet cowl lip[J].Journal of Aerospace Power,2009,24(9):2096-2100.(in Chinese)
    [7]肖丰收.若干典型高超声速激波干扰流动特性研究[D].合肥:中国科学技术大学,2016.XIAO Fengshou.Research on flow characteristics of some typical hypersonic shock wave interactions[D].Hefei:University of Science and Techonology of China,2016.(in Chinese)
    [8]MATTHEW P B,STEVEN O S.Effect of freestream noise on roughness induced transition for the X-51Aforebody[J].Journal of Spacecraft and Rockets,2008,45(6):1106-1116.
    [9]吕侦军,王旭东,季卫栋,等.三级压缩锥导乘波体设计技术与实验分析[J].实验流体力学,2015,29(5):38-44.LZhenjun,WANG Xudong,JI Weidong,et al.Design and experimental analysis of three-stage compression conederived waverider[J].Journal of Experiments in Fluid Mechanics,2015,29(5):38-44.(in Chinese)
    [10]徐大军,蔡国飙,乐川.吸气式高超声速飞行器气动热试验研究[J].宇航学报,2006,27(5):1004-1009.XU Dajun,CAI Guobiao,YUE Chuan.Aeroheating experiment for airbreathing hypersonic vehicle[J].Journal of Astronautics,2006,27(5):1004-1009.(in Chinese)
    [11]BOHBOT J,GRONDIN G,DARRACQ D,et al.A parrallel multigrid conservative patched/sliding mesh algorithm for turbulent flow computation of 3Dcomplex aircraft configurations[R].Reno,NV:39th AIAA Aerospace Sciences Meeting Conference and Exhibit,2001.
    [12]赵轲,高正红,黄江涛,等.拼接网格技术在复杂流场数值模拟中的应用研究[J].应用力学学报,2011,28(1):69-74.ZHAO Ke,GAO Zhenghong,HUANG Jiangtao,et al.Applications of the patched-grid technology in numerical simulation of flowfield[J].Chinese Journal of Applied Mechanics,2011,28(1):69-74.(in Chinese)
    [13]刘鑫,陆林生.拼接网格通量守恒插值算法研究[J].计算机应用与软件,2012,29(2):275-278.LIU Xin,LU Linsheng.Research on flux conservation interpolation algorithm of patched grid[J].Computer Applications and Software,2012,29(2):275-278.(in Chinese)
    [14]FAY J A,RIDDELL F R.Theory of stagnation point heat transfer in dissociated air[J].Journal of Aerospace Science,1958,25(2):73-85,121.
    [15]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [16]WALLIN S,JOHANSSON A.An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows[J].Journal of Fluid Mechanics,2000,403:89-132.
    [17]姜宝森,张亮,苏鹏辉,等.超声速流动中非线性EASM湍流模式应用研究[J].计算力学学报,2018,35(1):117-122.JIANG Baosen,ZHANG Liang,SU Penghui,et al.Study on the application of nonlinear EASM turbulence model in supersonic flows[J].Chinese Journal of computational Mechanics,2018,35(1):117-122.(in Chinese)
    [18]YAMAMOTO Y,TOTSUKA A,HOZUMI K,et al.Numerical and experimental aerothermodynamics of strong hypersonic shock-shock interactions[R].Louis,Missouri:8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700