用户名: 密码: 验证码:
稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime
  • 作者:靳旭红 ; 黄飞 ; 程晓丽 ; 王强
  • 英文作者:JIN Xuhong;HUANG Fei;CHENG Xiaoli;WANG Qiang;China Academy of Aerospace Aerodynamics,China Aerospace Sicence and Technology Corporation;School of Aerospace Engineering,Tsinghua University;
  • 关键词:稀薄气体 ; 表面缝隙 ; 方腔 ; 高超声速 ; 三维效应 ; 直接模拟Monte ; Carlo
  • 英文关键词:rarefied gas;;surface gap;;cavity;;hypersonic;;three-dimensional effect;;direct simulation Monte Carlo
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:中国航天科技集团有限公司中国航天空气动力技术研究院;清华大学航天航空学院;
  • 出版日期:2019-01-14 17:14
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(11402255)
  • 语种:中文;
  • 页:HKDI201901022
  • 页数:9
  • CN:01
  • ISSN:11-2297/V
  • 分类号:208-216
摘要
针对高空稀薄流区的高超声速飞行器表面缝隙或缺陷结构导致的局部气动加热问题,采用直接模拟Monte Carlo(DSMC)方法研究了70、75、80km和90km等4个飞行高度下稀薄流区高超声速缝隙流动问题,考虑稀薄气体效应和三维效应对缝隙内部流场结构和热流的影响。结果表明:上述飞行高度下,外部流动的分离和再附在缝隙内部形成一个充满腔体的单涡结构;稀薄气体效应对缝隙内部流动结构和壁面热流影响明显,随着高度的增加,主涡涡心上移,其形状逐渐变得"扁长",右上角逐渐变尖,热流越来越集中分布于缝隙下游侧面的顶部区域;三维缝隙效应阻碍来流气体分子进入缝隙,导致主涡涡心上移,二维缝隙假设会高估缝隙表面的热流。
        In order to solve the problem of local aerodynamic heating due to cavities or imperfections on the hypersonic vehicle surfaces,the direct simulation Monte Carlo(DSMC)was employed to investigate a rarefied and hypersonic flow over cavities at the altitudes of70,75,80 km and 90 km,while considering the effects of rarefied gas and three-dimensional property on flow-field structure inside the cavity and heat flux over the cavity surfaces.It showed that one primary recirculation region was formed as a result of flow separation and reattachment at aforementioned altitudes.In addition,rarefied gas effect played an important role in flow-field structure and heat flux;as the flight altitude increased,the primary vortexbecame slender,with its core moving up and top-right-corner part sharpening;and the heat flux consequently concentrated to the top region of the downstream surface of the cavity.Moreover,the inclusion of the third-dimension would preclude main-stream gas molecules from penetrating into the cavity,causing the rise of the core of the primary vortex,and an assumption of two dimensionalities resulted in an overprediction of heat transfer to the cavity surfaces.
引文
[1] PALHARINI R C,SCANLON T J,REESE J M.Aerothermodynamic comparison of two-and three-dimensional rarefied hypersonic cavity flows[J].Journal of Spacecraft and Rockets,2014,51(5):1619-1630.
    [2]唐功跃,吴国庭,姜贵庆.缝隙流动分析及其热环境的工程计算[J].中国空间技术,1996(6):1-7.TANG Gongyue,WU Guoting,JIANG Guiqing.Flow analysis and numerical computation of thermal environment in gaps[J].Chinese Space Science and Technology,1996(6):1-7.(in Chinese)
    [3]唐贵明.狭窄缝隙内的热流分布实验研究[J].流体力学实验与测量,2000,14(4):1-6.TANG Guiming.Experimental investigation of heat transfer distributions in a deep gap[J].Experiments and Measurements in Fluid Mechanics,2000,14(4):1-6.(in Chinese)
    [4] VOTTA R,SCHETTINO A,RANUZZI G,et al.Hypersonic low-density aerothermodynamics of Orion-like exploration vehicle[J].Journal of Spacecraft and Rocket,2009,46(4):781-787.
    [5] CHARWAT A F,ROOS J N,DEWEY C F,et al.An investigation of separated flows:PartⅠthe pressure field[J].Journal of Aerospace Sciences,1961,28(6):457-470.
    [6] CHARWAT A F,DEWEY C F,ROOS J N,et al.An investigation of separated flows:PartⅡflow in the cavity and heat transfer[J].Journal of Aerospace Sciences,1961,28(7):513-527.
    [7] NESTLER D E,SAYDAH A R,AUXER W L.Heat transfer to steps and cavities in hypersonic turbulent flow[J].AIAA Journal,1968,7(7):1368-1370.
    [8] EVERHART J L,ALTER S J,MERSKI N R,et al.Pressure gradient effects on hypersonic cavity flow heating[R].AIAA 2006-0185,2006.
    [9] CREIGHTON S,HILLIER R.Experimental and computational study of unsteady hypersonic cavity flows[J].The Aeronautical Journal,2007,111(1125):673-688.
    [10]邱波,张昊元,国义军,等.高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J].航空学报,2015,36(11):3515-3521.QIU Bo,ZHANG Haoyuan,GUO Yijun,et al.Numeric investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J].Acta Aeronautica et Astronautica Sinica,2015,36(11):3515-3521.(in Chinese)
    [11]邱波,国义军,张昊元,等.来流参数对防热瓦横缝旋涡结构及热环境的影响[J].航空学报,2016,37(3):761-770.QIU Bo,GUO Yijun,ZHANG Haoyuan,et al.Free stream parameters'effect on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J].Acta Aeronautica et Astronautica Sinica,2016,37(3):761-770.(in Chinese)
    [12]王智慧,鲍麟,童秉纲.尖化前缘的稀薄气体化学非平衡流动和气动加热相似律研究[J].气体物理,2016,1(1):5-12.WANG Zhihui,BAO Lin,TONG Binggang.Similarity law of aero-heating to sharpened noses in rarefied chemical nonequilibrium flows[J].Physics of Gases,2016,1(1):5-12.(in Chinese)
    [13]丁海河,王发民.高超声速飞行器-进气道一体化热流数值计算[J].航空动力学报,2007,22(8):1297-1302.DING Haihe,WANG Famin.Hypersonic vehicle-inlet integrated aeroheating simulation[J].Journal of Aerospace Power,2007,22(8):1297-1302.(in Chinese)
    [14]程晓丽,李俊红,王强.空间飞行器在火星再入环境下的气动力特性[J].宇航学报,2010,31(4):967-972.CHENG Xiaoli,LI Junhong,WANG Qiang.Aerodynamic force characteristics of Mars entry vehicles[J].Journal of Astronautics,2010,31(4):967-972.(in Chinese)
    [15] BIRD G A.Approach to translational equilibrium in a rigid sphere gas[J].Physics of Fluids,1963,6(10):1518-1519.
    [16] BIRD G A.Monte Carlo simulation of gas flows[J].Annual Review of Fluid Mechanics,1978,10(8):11-31.
    [17] MEHTA P M,MCLAUGHLIN C A,SUTTON E K.Drag coefficient modeling for grace using direct simulation Monte Carlo[J].Advances in Space Research,2013,52(12):2035-2051.
    [18] SUN Quanhua,BOYD I D.Evaluation of macroscopic properties in the direct simulation Monte Carlo method[J].Journal of Thermophysics and Heat Transfer,2005,19(3):329-335.
    [19] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M].New York:Oxford University Press,1994:340-346.
    [20] SCANLON T J,ROOHI E,WHITE C,et al.An opensource,parallel DSMC code for rarefied gas flows in arbitrary geometries[J].Computers and Fluids,2010,39(10):2078-2089.
    [21] BORGNAKKE C,LARSEN P S.Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J].Journal of Computational Physics,1975,18(4):405-420.
    [22] BIRD G A.Monte Carlo simulation in an engineering context[J].Progress in Astronautics and Aeronautics,1981,74:239-255.
    [23] ANDERSON J D.Fundamentals of aerodynamics[M].5th ed.New York:McGraw-Hill,2011:497-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700