用户名: 密码: 验证码:
工程结构蚀坑的腐蚀疲劳裂纹起始寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of corrosion fatigue crack initiation life of pits in engineering structures
  • 作者:李修波 ; 余建星 ; 樊志远 ; 余杨 ; 于国友
  • 英文作者:LI Xiubo;YU Jianxing;FAN Zhiyuan;YU Yang;YU Guoyou;Tianjin University//State Key Laboratory of Hydraulic Engineering Simulation and Safety;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;
  • 关键词:双参数点蚀坑 ; 应力集中 ; 有限元分析 ; 临界蚀坑深度
  • 英文关键词:two-parameter pit;;stress concentration;;finite element analysis;;critical pit depth
  • 中文刊名:YQCY
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:天津大学·水利工程仿真与安全国家重点实验室;高新船舶与深海开发装备协同创新中心;
  • 出版日期:2019-07-25
  • 出版单位:油气储运
  • 年:2019
  • 期:v.38;No.367
  • 基金:国家科技重大专项资助项目“厚壁管制管工艺及复杂载荷下的屈曲特性研究”,2016ZX05028005-004;; 国家重点基础研究发展计划(973计划)资助项目“深海水下油气输送系统安全运行与风险控制”,2014CB046804
  • 语种:中文;
  • 页:YQCY201907005
  • 页数:7
  • CN:07
  • ISSN:13-1093/TE
  • 分类号:38-44
摘要
为了研究腐蚀疲劳裂纹在蚀坑处萌生位置差异的本质及预测腐蚀疲劳裂纹起始寿命,采用双参数模型描述点蚀坑形貌,并基于三维有限元模型分析不同点蚀坑形貌下的应力集中情况。基于此,分析了蚀坑深度、深径比及位置等参数对蚀坑不同位置应力集中的影响规律。依据腐蚀疲劳现象学观点,建立了三维双参数点蚀坑腐蚀疲劳裂纹萌生评估模型,分析不同蚀坑形貌下腐蚀疲劳裂纹萌生的临界值。研究表明:控制腐蚀疲劳裂纹萌生的条件主要为蚀坑深度和蚀坑形状;萌生于蚀坑处不同位置的腐蚀疲劳裂纹的临界值均可采用蚀坑临界深度值表示。所建模型的有效性和合理性得到了有效验证,为工程实际中遭受腐蚀疲劳损伤结构的腐蚀疲劳起始寿命预测提供了一种可行性方法。(图5,表3,参24)
        In order to study the essence of the difference of corrosion fatigue crack initiation locations in the pit and predict the corrosion fatigue crack initiation life, the pit morphology was described by the two-parameter model and the stress concentration at different pit morphologies was analyzed based on the three-dimensional finite element model. Then, the influence laws of pit parameters(e.g. depth, depth-diameter ratio and location) on the stress concentration at different positions were investigated. Finally, a three-dimensional two-parameter pit-corrosion fatigue crack initiation evaluation model was established according to the phenomenology of corrosion fatigue, and the critical value of corrosion fatigue crack initiation corresponding to different pit morphologies was analyzed. It is shown that the factors controlling the corrosion fatigue crack initiation include the depth and shape of the pit. The critical values of the corrosion fatigue cracks initiating at different locations in the pit can be expressed by the critical pit depth. The validity and rationality of the proposed model are verified effectively. The research results provide a feasibility method for predicting the corrosion fatigue initiation life of the structures that are damaged by corrosion fatigue in engineering practice.(5 Figures, 3 Tables, 24 References)
引文
[1]KONDO Y.Prediction of fatigue crack initiation life based on pit growth[J].Corrosion,1989,45(1):7-11.
    [2]西田正孝.应力集中[M].北京:机械工业出版社,1986:15-100.MASATAKA X T.Stress concentration[M].Beijing:Machinery Industry Press,1986:15-100.
    [3]周向阳,柯伟.点蚀坑的形貌与腐蚀疲劳裂纹萌生[J].金属学报,1992,28(8):356-360.ZHOU X Y,KE W.Macro-and micromorphologies of pits and initiation of corrosion fatigue crack[J].Acta Metallurgica Sinica,1992,28(8):356-360.
    [4]ROKHLIN S I,KIM J Y,NAGY H,et al.Effect of pitting corrosion on fatigue crack initiation and fatigue life[J].Engineering Fracture Mechanics,1999,62:425-444.
    [5]PIDAPARTI R M,PATEL R.Correlation between corrosion pits and stresses in Al alloys[J].Mater Let,2008,21(3):57-62.
    [6]梁瑞,张新燕,李淑欣,等.半椭球蚀坑对圆棒应力集中的影响[J].中国腐蚀与防护学报,2013,33(6):532-536.LIANG R,ZHANG X Y,LI S X,et al.Effect of semi-ellipsoidal pit on stress concentration of round bar[J].Journal of Chinese Society for Corrosion and Protection,2013,33(6):532-536.
    [7]CERIT M,GENEL K,EKSI S.Numerical investigation on stress concentration of corrosion pit[J].Engineering Failure Analysis,2009,16(7):2467-2472.
    [8]HARLOW D G,WEI R P.A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles[J].Engineering Fracture Mechanics,1998,59(3):305-325.
    [9]MULLER M.Theoretical considerations on corrosion fatigue crack initiation[J].Metallurgical and Materials Transactions A,1982,13(4):649-655.
    [10]KIM Y H,FINE M E.Fatigue crack initiation and straincontrolled fatigue of some high strength low alloy steels[J].Metallurgical and Materials Transactions A,1982,13(1):59-57.
    [11]KIM Y H,LAIRD C.Crack nucleation and stage I propagation in high strain fatigue-II.mechanism[J].Acta Metallurgica,1978,26(5):789-799.
    [12]RUSK D,HOPPE W,BRAISTED B,et al.Corrosion-fatigue life prediction using an equivalent stress riser model[J].International Journal of Fatigue,2009,31:1464-1475.
    [13]XIANG Y B,LIU Y M.EIFS-based crack growth fatigue life prediction of pitting-corroded test specimens[J].Engineering Fracture Mechanics,2010,77(8):1314-1324.
    [14]周向阳,柯伟.交变载荷下点蚀坑的统计分布及演化[J].金属学报,1990,26(2):104-110.ZHOU X Y,KE W.Evolution of statistical distribution of pit geometric parameters under fatigue loading[J].Acta Metallurgica Sinica,1990,26(2):104-110.
    [15]PILKEY W D,PILKEY D F.Peterson’s stress concentration factors[M].3rd ed.Manhattan:John Wiley&Sons,2008:50-98.
    [16]CERIT M,GENEL K,EKSI S.Numerical investigation on stress concentration of corrosion pit[J].Engineering Failure Analysis,2009,16:2467-2472.
    [17]官春平.表面椭球凹坑缺陷的三维应力集中分析[J].广东轻工职业技术学院学报,2011,10(4):13-17.GUAN C P.Analysis on three-dimensional stress concentration of ellipsoid surface notch defects[J].Journal of Guangdong Industry Technical College,2011,10(4):13-17.
    [18]WANG Q Y,KAWAGOISHI N,CHEN Q,et al.Evaluation of the probability distribution of pitting corrosion fatigue life in aircraft materials[J].Acta Mechanica Sinica,2003,19(3):248-255.
    [19]MURAKAMI Y,ENDO M.The area parameter model for small defects and nonmetallic inclusions in fatigue strength:experimental evidences and applications[C].Birmingham:Engineering Materials Advisory Services Ltd,1992:51-57.
    [20]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2005:10-45.CAO C N.Natural environment corrosion of Chinese material[M].Beijing:Chemical Industry Press,2005:10-45.
    [21]ISHIHARA S,NAN Z Y,MCEVILY AJ,et al.On the initiation and growth behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum[J].Int JFatigue,2008,30(9):1659-1668.
    [22]MALKI B,BAROUX B.Computer simulation of the corrosion pit growth[J].Corros Sci,2005,47(1):171-182.
    [23]MAN Z Y,ISHIHARA S,GOSHIMA T.Corrosion fatigue behavior of extruded magnesium alloy in sodium chloride solution[J].International Journal of Fatigue,2008,30:1181-1188.
    [24]LI S X,AKID R.Corrosion fatigue life prediction of a steel shaft material in seawater[J].Engineering Failure Analysis,2013,34:324-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700