用户名: 密码: 验证码:
我国铜矿微生物浸出技术的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of research in copper bioleaching technology in China
  • 作者:尹升华 ; 王雷鸣 ; 吴爱祥 ; 陈勋 ; 严荣富 ; 齐炎
  • 英文作者:YIN Sheng-hua;WANG Lei-ming;WU Ai-xiang;CHEN Xun;YAN Rong-fu;QI Yan;Key Laboratory of Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines,University of Science and Technology Beijing;School of Civil and Resources Engineering,University of Science and Technology Beijing;
  • 关键词:溶浸采矿 ; 微生物浸出 ; 矿石堆浸 ; 溶液渗流 ; 孔隙演化
  • 英文关键词:solution mining;;bioleaching;;ore heap leaching;;solution seepage;;pore evolution
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学金属矿山高效开采与安全教育部重点实验室;北京科技大学土木与资源工程学院;
  • 出版日期:2019-01-28 14:49
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.298
  • 基金:国家自然科学基金优秀青年科学基金资助项目(51722401);国家自然科学基金重点资助项目(51734001);; 国家重点研发计划资助项目(2016YFC0600704)
  • 语种:中文;
  • 页:BJKD201902001
  • 页数:16
  • CN:02
  • ISSN:10-1297/TF
  • 分类号:4-19
摘要
回顾了我国微生物浸出技术发展的历史进程,总结了我国开展生物浸铜技术的探索与应用进程,介绍了紫金山铜矿、德兴铜矿两个典型的生物浸铜案例;探讨了浸矿细菌分离、鉴定与富集,生物浸出机理与界面反应,浸出体系多级渗流行为,孔隙结构重构与定量化,浸出体系多场耦合与过程模拟,电子废弃物中的铜金属回收领域的主要进展.最后,结合生物浸铜技术的当前进展,阐述了生物浸铜技术面临的环保、安全等方面的挑战与未来发展趋势,为今后该领域的研究提供良好借鉴.
        Mineral resources are the mainstay industries supporting the development of the national economy. Due to its excellent ductility,electrical and thermal conductivity,copper is widely used in construction,power,transportation,and manufacturing as an important strategic metal resource. According to statistics,in terms of output and consumption of ten kinds of non-ferrous metals such as copper,aluminum,and zinc,China has ranked first in the world for more than ten consecutive years. China's copper resources are poorly endowed,being low grade,highly ore-deficient,and of poor ore floatability; the use of conventional separation methods has been costly and caused serious environmental pollution due to difficulties with residue disposal. Bioleaching is a special mining technology that leaches and yields valuable metal elements from inside ores using leaching bacteria. Copper metal resources inside low-grade ores,waste ores,and boundary ores are recycled efficiently using bioleaching technology,which is efficient,and both environmentallyfriendly and economical. Currently,more than a quarter of the world's copper production depends on this technology. However,the microbial copper leaching process has always been regarded as a"black box",being difficult to effectively monitor and regulate. This paper reviews the history of bioleaching technology in China,reviews those copper mines that have carried out exploration into or application of bioleaching technology,and introduces two typical copper bioleaching industrial cases,the Zijinshan and Dexing Copper Mines. This paper explores( a) the main process of isolation,identification and enrichment of leaching bacteria,( b) the bioleaching mechanism and interface reaction,( c) the multistage seepage behavior of leaching systems,( d) the reconstruction and quantification of pore structures,( e) the multi-field coupling and process simulation of leaching systems,and( f) copper metal recycling from waste printed circuit boards. Finally,along with the current status of copper bioleaching,major challenges such as environmental protection,security,and future trends in copper bioleaching are discussed as a basis for further research.
引文
[1] Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy,2006,84(1-2):81
    [2] Rawlings D E,Johnson D B. The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia. Microbiol,2007,153:315
    [3] Panda S,Akcil A,Pradhan N,et al. Current scenario of chalcopyrite bioleaching:a review on the recent advances to its heapleach technology. Bioresour Technol,2015,196:694
    [4] Fang X,Shen Y,Zhao J,et al. Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol,2010,101(13):4814
    [5] Yin S H,Wang L M,Pan C Y,et al. Secondary copper sulfide bioleaching experiments. Chin J Eng,2017,39(10):1498(尹升华,王雷鸣,潘晨阳,等.次生硫化铜矿微生物浸出实验.工程科学学报,2017,39(10):1498)
    [6] Wu A X,Wang H J,Yang B H,et al. Progress and prospect of solution mining. Min Technol,2006,6(3):39(吴爱祥,王洪江,杨保华,等.溶浸采矿技术的进展与展望.采矿技术,2006,6(3):39)
    [7] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores——a brief overview. Hydrometallurgy,2016,165:206
    [8] Johnson D B. Biomining goes underground. Nat Geosci,2015,8:165
    [9] Shiers D W,Collinson D M,Watling H R. Life in heaps:a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction. Res Microbiol,2016,167(7):576
    [10] Rawlings D E,Silver S. Mining with microbes. Nat Biotechnol,1995,13:773
    [11] Yin S H,Wu A X,Wang H J,et al. Current status and present situation and development trend of low-grade ore bioleaching technology. Min Res Dev,2010,30(1):46(尹升华,吴爱祥,王洪江,等.微生物浸出低品位矿石技术现状与发展趋势.矿业研究与开发,2010,30(1):46)
    [12] Johnson D B. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol,1998,27(4):307
    [13] Johnson D B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol,2014,30:24
    [14] Videla A R,Lin C L,Miller J D. 3D characterization of individual multiphase particles in packed particle beds by X-ray microtomography(XMT). Int J Miner Process,2007,84(1-4):321
    [15] Miller J D,Lin C L,Hupka L,et al. Liberation-limited grade/recovery curves from X-ray micro CT analysis of feed material for the evaluation of separation efficiency. Int J Miner Process,2009,93(1):48
    [16] Yin S H,Wang L M,Pan C Y,et al. Fluid flowing characteristics in ore granular with fine interlayers existed. Chin J Nonferrous Met,2017,27(3):574(尹升华,王雷鸣,潘晨阳,等.细粒层存在条件下矿岩散体内的溶液流动特性.中国有色金属学报,2017,27(3):574)
    [17] Nosrati A,Quast K,Xu D F,et al. Agglomeration and column leaching behaviour of nickel laterite ores:effect of ore mineralogy and particle size distribution. Hydrometallurgy,2014,146:29
    [18] Kodali P,Dhawan N,Depci T,et al. Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching. Miner Eng,2011,24(13):1478
    [19] Ilankoon I M S K,Neethling S J. Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. Miner Eng,2016,86:130
    [20] Luo Y,Wen J K,Wu B,et al. Acid agglomeration and mechanism analysis of a low-grade oxide-sulfide mixed copper ore. Chin J Eng,2017,39(9):1321(罗毅,温建康,武彪,等.低品位氧硫混合铜矿的酸性制粒及机理.工程科学学报,2017,39(9):1321)
    [21] Zhang S,Liu W Y. Application of aerial image analysis for assessing particle size segregation in dump leaching. Hydrometallurgy,2017,171:99
    [22] Chen J P,Zhang Y,Wang J X,et al. On present situlation and potential analysis of copper resources in China. J Geol,2013,37(3):358(陈建平,张莹,王江霞,等.中国铜矿现状及潜力分析.地质学刊,2013,37(3):358)
    [23] Huang C K,Bai Y,Zhu Y S,et al. 1st ed. Copper Deposit of China. Beijing:Geological Publishing House,2001(黄崇轲,白冶,朱裕生,等. 1版.中国铜矿床.北京:地质出版社,2001)
    [24] Ruan R M. A Case Study on Bio-heapleaching Practice of Zijinshan Copper Sulphide:Kinetics and Process Optimization[Dissertation]. Changsha:Central South University,2011(阮仁满.紫金山铜矿生物堆浸工业案例分析——相关动力学研究与多因素匹配[学位论文].长沙:中南大学,2011)
    [25] Ruan R M,Wen J K,Chen J H. Bacterial heap-leaching:practice in Zijinshan copper mine. Hydrometallurgy,2006,83(1-4):77
    [26] Ruan R M,Liu X Y,Zou G,et al. Industrial practice of a distinct bioleaching system operated at low pH,high ferric concentration,elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy,2011,108(1-2):130
    [27] Liu X Y,Chen B W,Chen J H,et al. Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant. Miner Eng,2016,94:76
    [28] Ruan R M,Zou G,Zhong S P,et al. Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity——study on leaching kinetics of copper sulfides and its implications.Miner Eng,2013,48:36
    [29] Wan C F. Discussion on the discharge of waste stone and stack for heap leaching in Dexing Copper Mine. Nonferrous Mines,2000,29(2):15(万长峰.德兴铜矿废石排放与堆浸筑堆相结合的探讨.有色矿山,2000,29(2):15)
    [30] Wang H J,Wu A X,Zhang J,et al. Characters of anisotropy seepage in homogenous ore material. J Univ Sci Technol Beijing,2009,31(4):405(王洪江,吴爱祥,张杰,等.矿岩均质体各向异性渗流特性.北京科技大学学报,2009,31(4):405)
    [31] Li Z K,Gui B W,Duan X X. Production practice and technical study in heap leaching mill of Dexing copper mine. Min Metall Eng,2002,22(1):46(李壮阔,桂斌旺,段希祥.德兴铜矿堆浸厂的生产实践及技术研究.矿冶工程,2002,22(1):46)
    [32] Yang S R,Xie J Y,Qiu G Z,et al. Research and application of bioleaching and biooxidation technologies in China. Miner Eng,2002,15(5):361
    [33] Li X R,Song B S. Production of electrolytic copper from waste ore with dump leaching at Dexing copper mine. Min Metall,1999,8(2):44(李样人,宋炳申.德兴铜矿堆浸废矿石生产电铜.矿冶,1999,8(2):44)
    [34] Wu A X,Yin S H,Wang H J,et al. Technological assessment of a mining-waste dump at the Dexing copper mine,China,for possible conversion to an in situ bioleaching operation. Bioresour Technol,2009,100(6):1931
    [35] Yin S H,Wang L M,Wu A X,et al. Enhancement of copper recovery by acid leaching of high-mud copper oxides:a case study at Yangla Copper Mine,China. J Cleaner Pro,2018,202:321
    [36] Ruan R M,Wen J K,Chen J H. Bacterial heap-leaching:practice in Zijinshan copper mine. Hydrometallurgy,2006,83(1-4):77
    [37] Ruan R M,Liu X Y,Zou G,et al. Industrial practice of a distinct bioleaching system operated at low pH,high ferric concentration,elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy,2011,108(1-2):130
    [38] Wang B Y,Cong Z F,Dai S J. Current developments and prospects in bioleaching of copper ores. Non-Ferrous Min Metall,2008,24(4):28(王本英,丛自范,代淑娟.生物浸出提铜技术的研究现状及前景.有色矿冶. 2008,24(4):28)
    [39] He Z G,Xie X H,Xiao S M,et al. Microbial diversity of mine water at Zhong Tiaoshan copper mine,China. J Basic Microbiol,2007,47(6):485
    [40] Zhan J,Sun Q Y. Development of microbial properties and enzyme activities in copper mine wasteland during natural restoration. Catena,2014,116:86
    [41] Qiu G Z,Wan M X,Qian L,et al. Archaeal diversity in acid mine drainage from Dabaoshan Mine,China. J Basic Microbiol,2008,48(5):401
    [42] Hao X D,Liang Y L,Yin H Q,et al. The effect of potential heap construction methods on column bioleaching of copper flotation tailings containing high levels of fines by mixed cultures.Miner Eng,2016,98:279
    [43] Yang H X,Zhou A D,Xu J Z. Application of biohydrometallurgy in copper industry. Non-Ferrous Min Metall,2003,19(5):15(杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用.有色矿冶,2003,19(5):15)
    [44] Wu Y H. Study on Bioleaching of Yongping Low Grade Copper Sulfide Ore in Jiangxi by Mixed Cultures[Dissertation]. Changsha:Central South University,2011(吴永宏.江西永平低品位硫化铜矿石的混合菌浸出研究[学位论文].长沙:中南大学,2011)
    [45] Li L J. Study on Bacteria Bioleaching and Adsorbent for Low Grade Copper Mine in Qinghai Saishitang[Dissertation]. Mianyang:Southwest University of Science and Technology,2012(李靓洁.青海赛什塘低品位铜矿微生物浸出和吸附研究[学位论文].绵阳:西南科技大学,2012)
    [46] Dai Z M,Yin H Q,Zeng X X,et al. Comparison of microbial community of acid mine drainage from Dongchuan copper pyrite.Prog Mod Biomed,2007,7(11):1608(戴志敏,尹华群,曾晓希,等.云南东川黄铜矿酸性浸矿废水中微生物群落分析.现代生物医学进展,2007,7(11):1608)
    [47] Feng S S,Yang H L,Wang W. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure. Bioresour Technol,2015,192:75
    [48] Banerjee I,Burrell B,Reed C,et al. Metals and minerals as a biotechnology feedstock:engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol,2017,45:144
    [49] Li J L,Li D C. The practice of low grade primary chalcopyrite bacteria leaching technology. Copper Eng,2006(2):7(李金龙,李得春.低品位原生黄铜矿生物浸出技术的应用实践.铜业工程,2006(2):7)
    [50] He Z G,Zhao J C,Gao F L,et al. Monitoring bacterial community shifts in bioleaching of Ni--Cu sulfide. Bioresour Technol,2010,101(21):8287
    [51] Wang J. Research and Practice on Bioleaching of Low-Grade Complex Copper Sulphide[Dissertation]. Changsha:Central South University,2011(王军.低品位复杂硫化铜矿生物浸出的研究与应用[学位论文].长沙:中南大学,2011)
    [52] Wang J,Qin W Q,Qiu G Z. Theory and Practice of Bioleaching of Low Grade Complex Copper Sulphide Minerals. Changsha:Central South University Press,2015(王军,覃文庆,邱冠周.低品位复杂硫化铜矿生物浸出理论与实践.长沙:中南大学出版社,2015)
    [53] Zhen S J,Yan Z Q,Zhang Y S,et al. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine,chlorite and antigorite. Hydrometallurgy,2009,96(4):337
    [54] Zhuang W Q,Fitts J P,Ajo-Franklin C M,et al. Recovery of critical metals using biometallurgy. Curr Opin Biotechnol,2015,33:327
    [55] Tuovinen O H,Fry I J. Bioleaching and mineral biotechnology.Curr Opin Biotechnol,1993,4(3):344
    [56] Johnson D B. Biodiversity and interactions of acidophiles:key to understanding and optimizing microbial processing of ores and concentrates. Trans Nonferrous Met Soc China,2008,18(6):1367
    [57] Temple K L,Colmer A R. The autotrophic oxidation of iron by a new bacterium:Thiobacillus ferrooxidans. J Bacteriol.,1951,62(5):605
    [58] Zhu T. Current Copper Hydrometallurgy. Beijing:Metallurgical Industry Press,2002(朱屯.现代铜湿法冶金.北京:冶金工业出版社,2002)
    [59] Crdenas J P,Quatrini R,Holmes D S. Genomic and metagenomic challenges and opportunities for bioleaching:a mini-review. Res Microbiol,2016,167(7):529
    [60] Qiu G Z,Wang J,Zhong K N,et al. Cultivation and industrial application of bacteria. Met Ore Dress Abroad,1998(6):29(邱冠周,王军,钟康年,等.浸矿细菌的育种及工业应用.国外金属矿选矿,1998(6):29)
    [61] Gao J,Zhang C G,Wu X L,et al. Isolation and identification of a strain of Leptospirillum ferriphilum from an extreme acid mine drainage site. Ann Microbiol,2007,57(2):171
    [62] Xie X,Xiao S,He Z,et al. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine,China. J Appl Microbiol,2007,103(4):1227
    [63] Yin H Q,Cao L H,Qiu G Z,et al. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. J Microbiol Methods,2007,70(1):165
    [64] Yin H Q. Development and Application of the Microarray Technology during the Research on the Structure and Function of Microbial Communities for Acid Drainages from the Copper Mines[Dissertation]. Changsha:Central South University,2007(尹华群.在铜矿矿坑水微生物群落结构与功能研究中基因芯片技术的发展和应用[学位论文].长沙:中南大学,2007)
    [65] Dong Y B,Lin H,Wang H,et al. Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Miner Eng,2011,24(8):870
    [66] Zhang Y S. The Bioleaching of Low Grade Copper Sulphide Ore[Dissertation]. Changsha:Central South University,2007(张雁生.低品位原生硫化铜矿的细菌浸出研究[学位论文].长沙:中南大学,2007)
    [67] Yin S H,Wang L M,Chen X. Effects of ore particle sizes on leaching regularities of secondary copper sulphide. J Central S Univ Sci Technol,2015,46(8):2771(尹升华,王雷鸣,陈勋.矿石粒径对次生硫化铜矿浸出规律的影响.中南大学学报(自然科学版),2015,46(8):2771)
    [68] Hu K J,Wu A X,Wang H J,et al. A new heterotrophic strain for bioleaching of low grade complex copper ore. Minerals,2016,6(1):12
    [69] Wang H J,Xu C S,Wu A X,et al. Inhibition of spontaneous combustion of sulfide ores by thermopile sulfide oxidation. Miner Eng,2013,49:61
    [70] Qiu G Z,Liu X D,Zhou H B. Microbial community structure and function in sulfide ore bioleaching systems. Trans Nonferrous Met Soc China,2008,18(6):1295
    [71] Qin W Q,Yang C R,Lai S S,et al. Bioleaching of chalcopyrite by moderately thermophilic microorganisms. Bioresour Technol,2013,129:200
    [72] Li H X,Dong Q H,Cang D Q,et al. Thermophilic microorganism sulfolobus growth and leaching chalcopyrite properties. J Univ Sci Technol Beijing,2007,29(1):20(李宏煦,董清海,苍大强,等.高温浸矿菌sulfolobus的生长及浸矿性能.北京科技大学学报,2007,29(1):20)
    [73] Liang C L. The Study of Thermo-bioleaching Mechanism of Chalcopyrite and Therein Sulphur Speciation Transformation[Dissertation]. Changsha:Central South University,2011(梁长利.黄铜矿高温生物浸出机理和硫形态转化研究[学位论文].长沙:中南大学,2011)
    [74] Ding J N. Isolation,Identification of Thermophilic Leaching Microorganisms and Basic Studies on Their Application and Bioleaching Potential[Dissertation]. Changsha:Central South University,2007(丁建南.几种高温浸矿菌的分离鉴定及其应用基础与浸矿潜力研究[学位论文].长沙:中南大学,2007)
    [75] Chen L X,Huang L N,Mendez-Garcia C,et al. Microbial communities,processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol,2016,38:150
    [76] Wu B. A Study on Fundamentals of Selective Inhibit Pyrite Bioleaching of Chalcocite and Covellite[Dissertation]. Beijing:General Research Institute for Nonferrous Metals,2017(武飚.黄铁矿与辉铜矿、铜蓝选择性生物浸出机理研究[学位论文].北京:北京有色金属研究总院,2017)
    [77] Ma L Y,Wang X J,Feng X,et al. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession. Bioresour Technol,2017,223:121
    [78] Flemming H C,Wingender J. The biofilm matrix. Nat Rev Microbiol,2010,8(9):623
    [79] Zeng W M. The Formation Mechanism of Passivation Layer and Its Elimination Way during Bioleaching of Chalcopyrite[Dissertation]. Changsha:Central South University,2011(曾伟民.黄铜矿生物浸出过程中钝化膜的形成机制及其消除方法探讨[学位论文].长沙:中南大学,2011)
    [80] Yu R L,Liu A J,Liu Y N,et al. The research progress of the functions and mechanism of extracellular proteins in bioleaching.Biotechnol Bull,2017,33(7):62(余润兰,刘阿娟,刘亚楠,等.微生物浸出过程中胞外蛋白的作用及其机理研究进展.生物技术通报,2017,33(7):62)
    [81] Yu R L,Shi L J,Zhou D,et al. Research development of microorganism synergy mechanisms during bioleaching. Chin J Nonferrous Met,2013,23(10):3006(余润兰,石丽娟,周丹,等.生物浸出过程中微生物协同作用机制的研究进展.中国有色金属学报,2013,23(10):3006)
    [82] Qiu G Z,Liu J S,Wang D Z,et al. Iron behaviour in growth of thiobacillus ferrooxidans. J Central S Univ Technol,1998,29(3):226(邱冠周,柳建设,王淀佐,等.氧化亚铁硫杆菌生长过程铁的行为.中南工业大学学报,1998,29(3):226)
    [83] Zhao H B,Wang J,Qiu J Q,et al. Surface physicochemical properties of bornite in presence of bacteria. J Central S Univ Sci Technol,2015,46(1):1(赵红波,王军,邱建强,等.细菌作用下斑铜矿表面物理化学性质变化.中南大学学报(自然科学版),2015,46(1):1)
    [84] Diao M X,Taran E,Mahler S,et al. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Adv Colloid Interface Sci,2014,212:45
    [85] Zhang R Y,Bellenberg S,Castro L,et al. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum. Hydrometallurgy,2014,150:245
    [86] Wu A X,Yin S H,Yang B H,et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy,2007,87(3-4):124
    [87] Yin S H,Wu A X,Hu K J,et al. Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions. Hydrometallurgy,2013,133:1
    [88] Yin S H,Wang L M,Chen X,et al. Effect of ore size and heap porosity on capillary process inside a leaching heap. Trans Nonferrous Met Soc China,2016,26(3):835
    [89] Wu A X,Li X W,Yin S H,et al. Interface effects of unsaturated seepage in dump leaching. J Univ Sci Technol Beijing,2013,35(7):844(吴爱祥,李希雯,尹升华,等.矿堆非饱和渗流中的界面作用.北京科技大学学报,2013,35(7):844)
    [90] Yin S H,Wu A X. Study on the seepage law of solution in dump leaching. Min Res Dev,2006,26(1):31(尹升华,吴爱祥.堆浸矿堆溶液渗流规律初探.矿业研究与开发,2006,26(1):31)
    [91] Liu C. Evolution of the Pore Structure and Flow in Granular Ore Heaps for Copper Oxides Acid Leaching[Dissertation]. Beijing:University of Science and Technology Beijing,2017(刘超.酸浸条件下氧化铜矿岩散体孔隙结构及渗流演化规律[学位论文].北京:北京科技大学,2017)
    [92] Yin S H,Wu A X,Su Y D,et al. Experimental study on preferential solution flow during dump leaching of low-grade ores. J Central S Univ Technol,2007,14(4):584
    [93] Dhawan N,Safarzadeh M S,Miller J D,et al. Crushed ore agglomeration and its control for heap leach operations. Miner Eng,2013,41:53
    [94] Wang S Y,Wu A X,Wang H J,et al. Crash of wash-classification of heap leaching used in high-clay copper oxide ore. Chin J Nonferrous Met,2013,23(1):229(王少勇,吴爱祥,王洪江,等.高含泥氧化铜矿水洗-分级堆浸工艺.中国有色金属学报,2013,23(1):229)
    [95] Yin S H,Chen X,Wu A X,et al. Undisturbed test on mesoscopic solution seepage field in ore heap based on PIV. J Central S Univ Sci Technol,2015,46(7):2597(尹升华,陈勋,吴爱祥,等.基于PIV技术的细观矿堆溶液渗流场无扰动测试.中南大学学报(自然科学版),2015,46(7):2597)
    [96] Yin S H,Wang L M,Xie F F,et al. Effect of heap structure on column leaching of secondary copper sulphide. Chin J Nonferrous Met,2017,27(11):2340(尹升华,王雷鸣,谢芳芳,等.堆体结构对次生硫化铜矿柱浸的影响.中国有色金属学报,2017,27(11):2340)
    [97] Wang Y M,Wu A X,Zuo H,et al. Effect of particles sedimentation during leaching on seepage characteristic of copper dumps.Chin J Nonferrous Met,2007,17(12):2074(王贻明,吴爱祥,左恒,等.微粒渗滤沉积作用对铜矿排土场渗流特性的影响.中国有色金属学报,2007,17(12):2074)
    [98] Dhawan N,Safarzadeh M S,Miller J D,et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Miner Eng,2012,35:75
    [99] Wu A X,Xue Z L,Yin S H,et al. Study of the granular medium structure of mine rock and solution distribution based on MRI technology. J China Univ Min Technol,2014,43(4):582(吴爱祥,薛振林,尹升华,等.基于核磁共振技术的矿岩散体结构及溶液分布研究.中国矿业大学学报,2014,43(4):582)
    [100] Lin C L,Videla A R,Miller J D. Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray Microtomography using the He--Chen-Zhang Lattice Boltzmann Model. Flow Meas Instrum,2010,21(3):255
    [101] Wen J K. Research and Application on Selective Bioleaching of High Sulphur Low Copper Secondary Copper Sulphide Ore[Dissertation]. Beijing:General Research Institute for Nonferrous Metals,2016(温建康.高硫低铜次生硫化铜矿选择性生物浸出研究与应用[学位论文].北京:北京有色金属研究总院,2016)
    [102] Xue Z L,Wu A X,Yin S H,et al. Evolution rules of dual medium fractal seepage in copper oxide ore heap leaching. Chin J Nonferrous Met,2014,24(9):2373(薛振林,吴爱祥,尹升华,等.氧化铜矿堆浸双重介质分形渗流演化规律.中国有色金属学报,2014,24(9):2373)
    [103] Yang B H,Wu A X,Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng,2016,38(3):328(杨保华,吴爱祥,缪秀秀.基于图像处理的矿石颗粒三维微观孔隙结构演化.工程科学学报,2016,38(3):328)
    [104] Lin Q Y,Barker D J,Dobson K J,et al. Modelling particle scale leach kinetics based on X-ray computed micro-tomography images. Hydrometallurgy,2016,162:25
    [105] Chen X S,Liang X C,Xun Z Y. The infiltration models of leach solution in heap leaching process. Gold,1999,20(4):30(陈喜山,梁晓春,荀志远.堆浸工艺中溶浸液的渗透模型.黄金,1999,20(4):30)
    [106] Pan W. Study on Chaos Characteristics and Control Theory of Heap Immersed Surface[Dissertation]. Changsha:Central South University,2005(潘伟.堆浸浸润面混沌特性与控制理论研究[学位论文].长沙:中南大学,2005)
    [107] Liu J Z. Numerical Simulation Analysis and Grey Prediction Research of Heap Leaching Process[Dissertation]. Changsha:Central South University,2007(刘金枝.堆浸浸出过程数值模拟分析及灰色预测研究[学位论文].长沙:中南大学,2007)
    [108] Miao X X,Narsilio G A,Wu A X,et al. A 3D dual pore-system leaching model. Part 1:Study on fluid flow. Hydrometallurgy,2017,167:173
    [109] Zeng W M,Zhu H Z,Ye Z J,et al. Review on recovering precious metals from wasted circuit board by bio-hydrometallurgy technology. Nonferrous Met Sci Eng,2013,4(1):26(曾伟民,朱海珍,叶子婕,等.生物湿法冶金技术回收废弃线路板中有价金属的研究进展.有色金属科学与工程,2013,4(1):26)
    [110] Zhang Y H,Liu S L,Xie H H,et al. Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci,2012,16:560
    [111] Lu Y,Xu Z M. Precious metals recovery from waste printed circuit boards:A review for current status and perspective. Resour Conserv Recycl,2016,113:28
    [112] Liang G B,Tang J H,Liu W P,et al. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards(PCBs). J Hazard Mater,2013,250-251:238
    [113] Wang F F,Zhao Y M,Zhang T,et al. Metals recovery from dust derived from recycling line of waste printed circuit boards.J Cleaner Prod,2017,165:452
    [114] Gu W H,Bai J F,Dong B,et al. Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode. Chem Eng J,2017,324:122
    [115] Awasthi A K,Zeng X L,Li J H. Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environ Sci Pollut Res,2016,23(21):21141
    [116] Tripathi V,Edrisi S A,Chen B,et al. Biotechnological advances for restoring degraded land for sustainable development.Trends Biotechnol,2017,35(9):847
    [117] Yin S H,Wang L M,Kabwe E,et al. Copper bioleaching in China:review and prospect. Miner,2018,8(2):32
    [118] Brierley C L,Brierley J A. Progress in bioleaching:part b:application of microbial processes by the minerals industries. Appl Microbiol Biotechnol,2013,97(17):7543
    [119] Rawlings D E,Dew D,du Plessis C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol,2003,21(1):38
    [120] Zechendorf B. Sustainable development:how can biotechnology contribute? Trends Biotechnol,1999,17(6):219
    [121] Chen L X,Huang L N,Méndez-García C,et al. Microbial communities,processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol,2016,38:150
    [122] Herbert R A. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol,1992,10:395
    [123] Haque N,Norgate T. The greenhouse gas footprint of in-situ leaching of uranium,gold and copper in Australia. J Cleaner Prod,2014,84:382
    [124] Pathak A,Morrison L,Healy M G. Catalytic potential of selected metal ions for bioleaching,and potential techno-economic and environmental issues:a critical review. Bioresour Technol,2017,229:211
    [125] Zhang L G,Xu Z M. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J Cleaner Prod,2016,127:19
    [126] Gadd G M,White C. Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol,1993,11(8):353
    [127] Murray C,Platzer W,Petersen J. Potential for solar thermal energy in the heap bioleaching of chalcopyrite in Chilean copper mining. Miner Eng,2017,100:75
    [128] Wu A X,Yang B H,Liu J Z,et al. Analysis of pore structure evolution of ore granular media during leaching based on X-ray computed tomography. Chin J Process Eng,2007,7(5):960(吴爱祥,杨保华,刘金枝,等.基于X光CT技术的矿岩散体浸出过程中孔隙演化规律分析.过程工程学报,2007,7(5):960)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700