用户名: 密码: 验证码:
Al_xCrFeNiTi系高熵合金成分和弹性性质关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between compositions and elastic properties of Al_xCrFeNiTi high entropy alloys
  • 作者:王浩玉 ; 农智升 ; 王继杰 ; 朱景
  • 英文作者:Wang Hao-Yu;Nong Zhi-Sheng;Wang Ji-Jie;Zhu Jing-Chuan;School of Materials Science and Engineering, Shenyang Aerospace University;School of Materials Science and Engineering, Harbin Institute of Technology;
  • 关键词:Al_xCrFeNiTi系高熵合金 ; 第一性原理计算 ; 固溶体特征参数 ; 弹性性质
  • 英文关键词:Al_xCrFeNiTi high entropy alloys;;first principle calculations;;solid solution characteristics;;elastic properties
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:沈阳航空航天大学材料科学与工程学院;哈尔滨工业大学材料科学与工程学院;
  • 出版日期:2019-01-29 10:58
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:51701128)资助的课题~~
  • 语种:中文;
  • 页:WLXB201903023
  • 页数:10
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:212-221
摘要
为了探索Al_xCrFeNiTi系高熵合金组成成分和弹性性质的关系,结合固溶体特征参数和第一性原理计算,研究Al元素含量对Al_xCrFeNiTi (x=0, 0.5, 1, 2, 3, 4)合金结构和弹性性质的影响,并分析合金固溶体特征参数与弹性性质之间的关系.结果表明:Al_xCrFeNiTi系合金的价电子浓度随着Al含量的增加逐渐减小,合金在体心立方结构下的形成焓均低于面心立方结构,说明研究的Al_xCrFeNiTi系合金会形成单一的体心立方结构固溶体;合金的晶格常数和形成能力强弱随着Al含量的增加而增大,但合金的结构稳定性略有下降;当合金元素按照等原子比进行成分配比时,合金的原子尺寸差异最大; Al_xCrFeNiTi系合金中不同原子之间除了金属键结合外,还表现出一定的共价和离子键结合特征;对于Al_xCrFeNiTi系合金而言,随着热力学熵焓比的增大,合金体弹模量和韧性随之增大;随着合金混合焓的增加,合金在压缩方向的各向异性程度明显降低.热力学熵焓比和混合焓可作为Al_xCrFeNiTi系高熵合金成分设计的重要参数.
        The effects of Al content on structure and elastic properties of Al_xCrFeNiTi(x = 0, 0.5, 1, 2, 3, 4), and elastic properties varying with solid solution characteristic parameters of alloys are investigated in this work to explore the relationships between compositions and elastic properties of Al_xCrFeNiTi high entropy alloys. The results show that the valence electron concentrations of Al_xCrFeNiTi alloys decrease gradually with the increase of Al content, and the enthalpy formed by alloy with body center cubic structure is lower than that with face center cubic structure when Al content of the alloy is the same. It implies that Al_xCrFeNiTi alloy will form a single solid solution with body centered cubic structure by referring to valence electron concentration theory and formation enthalpy calculation. The lattice constants and formation capacities of Al_xCrFeNiTi alloys increase with Al content rising, while the structure stability of alloys presents a gradual downward trend. The atomic size difference shows the largest value when all elements in the alloy have equal molar ratio, indicating that the lattice distortion of the alloy exhibits the highest level at this time. The total state of density of Al_xCrFeNiTi alloy moves to a higher energy level as the content of Al increases, which is an obvious characteristic of the declining structural stability of alloys. It is consistent with the result of cohesive energy. Al and Ti both lose electrons after bonding, while Ni and Fe both gain electrons. The bonding behavior between atoms shows not only metal bonding but also somewhat covalent and ionic bonding characteristics by analyzing the electron density difference and atomic Mulliken populations of Al_xCrFeNiTi alloys. The elastic modulus and toughness of alloy will be improved with the increase of the ratio of thermodynamic entropy to enthalpy( ?),and the anisotropy in compression direction of alloy decreases obviously with the rise of mixing enthalpy(ΔHmix). The solid solution characteristics including ? and ΔHmix will be used as important parameters for the compositions' design for Al_xCrFeNiTi alloy.
引文
[1]Yeh J W,Chen S K,Lin S J,Gan J Y,Chin T S,Shun T T,Tsau C H,Chang S Y 2004 Adv.Eng.Mater.6 299
    [2]Miracle D B,Senkov O N 2017 Acta Mater.122 448
    [3]Gludovatz B,Hohenwarter A,Catoor D,Chang E H,George E P,Ritchie R O 2014 Science 345 1153
    [4]Tsai M H,Yeh J W 2014 Mater.Res.Lett.2 107
    [5]Senkov O N,Miller J D,Miracle D B,Woodward C 2015Nat.Commun.6 6529
    [6]Chuang M H,Tsai M H,Wang W R,Lin S J,Yeh J W 2011Acta Mater.59 6308
    [7]Dong Y,Zhou K,Lu Y P,Gao X X,Wang T M,Li T J 2014Mater.Des.57 67
    [8]Nong Z S,Zhu J C,Zhao R D 2017 Intermetallics 86 134
    [9]Liu R W 2018 M.S.Thesis(Shandong:Shandong Agricultural University)(in Chinese)[刘瑞文2018硕士学位论文(山东:山东农业大学)]
    [10]Zhang Y,Yang X 2012 Mater.Chem.Phys.132 233
    [11]Tian F Y,Varga L K,Chen N X,Shen J,Vitos L 2014 J.Alloys Compd.599 19
    [12]Zhang Y,Zhou Y J,Lin J P,Chen G L,Liaw P K 2008 Adv.Eng.Mater.10 534
    [13]Zhang Z,Xiong X Z,Yi J J,Li J F 2013 Acta Phys.Sin.62136401(in Chinese)[张章,熊贤仲,乙姣姣,李金富2013物理学报62 136401]
    [14]Massalaski T B 2010 Mater.Trans.51 583
    [15]Guo S,Ng C,Lu J,Liu C T 2011 J.Appl.Phys.109 103505
    [16]Marlo M,Milman V 2000 Phys.Rev.B 62 2899
    [17]Yao H Z,Ouyang L Z,Ching W Y 2007 J.Am.Ceram.Soc.90 3194
    [18]Hao X F,Xu Y H,Wu Z J,Zhou D F,Liu X J,Meng J 2008J.Alloys Compd.453 413
    [19]Sahu B R 1997 Mater.Sci.Eng.B 49 74
    [20]Broyden C G,Dennis J E,MoréJ J 1973 J.Appl.Math.12223
    [21]Sui Y W,Gao S,Chen X,Qi J Q,Yang F,Wei F X,He Y Z2017 Vacuum 144 80
    [22]Segall M D,Shah R,Pickard C J,Payne M C 1996 Phys.Rev.B 54 16317
    [23]Fan K M,Yang L,Sun Q Q,Dai Y Y,Peng S M,Long X G,Zhou X S,Zu X T 2013 Acta Phys.Sin.62 116201(in Chinese)[范开敏,杨莉,孙庆强,代云雅,彭述明,龙兴贵,周晓松,祖小涛2013物理学报62 116201]
    [24]Born M,Huang K 1954 Dynamical Theory of Crystal Lattices(Oxford:Oxford University Press)p10
    [25]Nye J F 1985 Physical Properties of Crystals(Oxford:Oxford University Press)p113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700