用户名: 密码: 验证码:
高温FDM喷头的有限元建模及温度场仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Modeling and Temperature Field Simulation of High Temperature FDM Sprinkler
  • 作者:何昱煜 ; 程军 ; 刘益剑 ; 杨继全 ; 朱小刚 ; 刘正武 ; 乔凤斌
  • 英文作者:HE Yuyu;CHENG Jun;LIU Yijian;YANG Jiquan;ZHU Xiaogang;LIU Zhengwu;QIAO Fengbin;Nanjing Normal University,Jiangsu 3D Printing Equipment and Manufacturing Key Laboratory;Shanghai Aerospace Equipment Manufacturing Co.,Ltd.;
  • 关键词:3D打印 ; 熔融沉积成型 ; 有限元法 ; ANSYS ; 温度场
  • 英文关键词:3D printing;;FDM;;finite element method;;ANSYS;;temperature field
  • 中文刊名:SULA
  • 英文刊名:Plastics
  • 机构:南京师范大学江苏省三维打印装备与制造重点实验室;上海航天设备制造总厂有限公司;
  • 出版日期:2019-04-18
  • 出版单位:塑料
  • 年:2019
  • 期:v.48;No.260
  • 基金:国家自然科学基金(51605229);; 江苏省高校自然科学基金(16KJB460016、17KJB510031);; 中国博士后科学基金(2016M601844);; 江苏省科技成果转化计划专项资金(BA201606)
  • 语种:中文;
  • 页:SULA201902021
  • 页数:3
  • CN:02
  • ISSN:11-2205/TQ
  • 分类号:85-87
摘要
利用ANSYS有限元仿真软件,针对复合材料的高温熔融沉积(Fused Deposition Modeling,FDM)打印喷头进行了物理建模以及温度场仿真,为解决3D打印喷头由于受热不均引起的喷头堵塞,从而导致产品的翘曲变形、不光滑等问题提供了帮助。针对已有的喷头形状,选择铝合金、不锈钢、紫铜、钨等材料进行了温度场仿真。结果表明:不锈钢和紫铜材料的喷头温度均在200℃以上,满足ABS所需的170℃以上熔融温度,较好地符合了要求;而铝合金以及钨则存在温度区间低于170℃的区域,易造成喷头的凝固堵塞。在此基础上,对喷头形状进行了尺寸形状的优化,通过增加薄壁区的厚度,使喷头的温度分布更加合理,避免应力集中,防止喷头薄壁处变形、堵塞等。
        The ANSYS finite element simulation software was used to carry out physical modeling and temperature field simulation for the high temperature fused deposition printing nozzle of composite materials. The problems of warpage deformation and surface unevenness of printing products caused by nozzle clogging due to uneven heating were sovled.According to the shape of the existing nozzle,the temperature field simulation was carried out by selected materials such as aluminum alloy,stainless steel,copper,and dock. The results showed that the sprinkler temperatures of stainless steel and copper materials were above 200 ℃,which met the requirements of ABS melting temperature( above 170 ℃). However,aluminum alloy and dock were below 170 ℃,which was easy to cause solidification blockage. On this basis,the shape of the sprinkler was optimized. By thickening the thickness of the thin-walled area,the temperature distribution of the sprinkler was more reasonable,the stress concentration could be avoided,and the deformation and blockage of the thin-walled part of the sprinkler could be dissolved.
引文
[1]胡镔,胡万里,史长春,等.基于多物理场耦合的高温FDM喷嘴热—应力仿真分析[J].南昌工程学院学报,2016,35(4):71-73.
    [2]宋丽莉.快速原型技术的研究现状及存在的问题[J].科技创新导报,2013(1):53-54.
    [3] ZIEMIAN S,OKWARA M,ZIEMIAN C W. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene[J]. Rapid Prototyping Journal,2015,21(3):270-278.
    [4]张自强.基于FDM技术3D打印机的设计与研究[D].长春:长春工业大学,2015.
    [5] TURNER B N,GOLD S A. A review of melt extrusion additive manufacturing processes:Ⅱ. materials, dimensional accuracy, and surface roughness[J]. Rapid Prototyping Journal,2015,21(3):250-261.
    [6]周志斌. FDM快速成型机的数值模拟及结构优化[D].鞍山:辽宁科技大学,2016.
    [7]王灿才. 3D打印的发展现状分析[J].丝网印刷,2012(9):37-41.
    [8]张钰.聚醚醚酮仿生人工骨3D打印热力学仿真及实验研究[D].长春:吉林大学,2014.
    [9] INZANA J A,OLVERA D,FULLER S M,et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J]. Biomaterials,2014,35(13):4026-4034.
    [10]乔女.基于APDL的ABS材料FDM-3D打印温度场有限元分析[J].航空精密制造技术,2017,53(2):41-45.
    [11]王柏通. 3D打印喷头的温度分析及控制策略研究[D].长沙:湖南师范大学,2014.
    [12]贾永臻,廖敦明,陈涛,等.基于Fluent的3D打印ABS熔体热流模拟分析[J].塑料,2017,46(1):61-64.
    [13]赵艳志,麻向军.塑料挤出成型过程的数值模拟研究[J].橡塑技术与装备,2007,33(4):7-12.
    [14]汪传生,王虎子,蔡宁,等.粉体喂料3D打印机喷头装置的温度分析及优化设计[J].中国塑料,2018,32(2):98-102.
    [15]吕蒙,牛晨旭,杨辰飞. FDM型3D打印机喷头温度场仿真[J].机械,2018,45(7):28-31.
    [16] VAEZI M,YANG S. Extrusion-based additive manufacturing of PEEK for biomedical applications[J]. Virtual&Physical Prototyping,2015,10(3):123-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700