用户名: 密码: 验证码:
混合药剂对浮选柱中气泡性质及其分散特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of reagent blend on characteristics and dispersion of bubbles in a flotation column
  • 作者:朱宏 ; 朱金波 ; ALEJANDRO ; López ; Valdivieso ; 闵凡飞 ; 王海楠 ; 徐文玉 ; 李梦闪
  • 英文作者:ZHU Hongzheng;ZHU Jinbo;ALEJANDRO López Valdivieso;MIN Fanfei;WANG Hainan;XU Wenyu;LI Mengshan;State key Laboratory of Ming Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Science and Technology;School of Materials Science and Engineering,Anhui University of Science and Technology;Instituto de Metalurgia,Universidad Autonoma de SanLuisPotosi;
  • 关键词:气泡 ; Sauter直径 ; 吸附密度 ; 表面张力 ; 气泡表面积通量 ; 充气量
  • 英文关键词:bubble;;Sauter mean diameter;;adsorption density;;surface tension;;bubble surface area flux;;aeration rate
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室;安徽理工大学材料科学与工程学院;圣路易斯波托西自治大学冶金研究所;
  • 出版日期:2019-05-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.296
  • 基金:安徽省自然科学基金青年基金资助项目(1908085QE188);; National Council of Science and Technology of Mexico(742903)
  • 语种:中文;
  • 页:MTXB201905032
  • 页数:7
  • CN:05
  • ISSN:11-2190/TD
  • 分类号:310-316
摘要
为研究十二胺和仲辛醇对浮选柱内气泡性质及其分散特征的影响,利用图像分析法测定了气泡的粒径分布,分别采用表面张力仪和量筒法测定了表面张力和充气量,并进一步分析了气泡的吸附密度和表面积通量。研究表明,随着十二胺和仲辛醇药剂浓度的增大,气泡粒径逐渐减小并在达到临界兼并浓度后分别稳定在0. 630 3和0. 602 0 mm,其中气泡粒径衰变程度为99%时,十二胺L,相同药剂浓度时,十二胺溶液中的气泡尺寸大于仲辛醇溶液的;溶液的表面张力随着药剂浓度的增大而线性减小,相同药剂浓度时,十二胺溶液的表面张力低于仲辛醇溶液;充气量随着药剂浓度的增大而逐渐增大,相同药剂浓度时,十二胺溶液的充气量大于仲辛醇溶液。在临界兼并浓度时,十二胺和仲辛醇在气泡表面吸附密度分别为/m2,仲辛醇的气泡表面积通量大于十二胺。随着仲辛醇溶液中十二胺添加量的增大,气泡临界兼并浓度和稳定粒径均逐渐减小,其中十二胺添加量为0. 032 4 mmol L,气泡稳定粒径也达到最小值为0. 583 3 mm;表面张力和吸附密度均随着十二胺添加量的增大而逐渐减小,其中十二胺添加量为L时,气泡表面药剂吸附密度达到最小值0. 154 0μmol量均随着十二胺添加量的增大而逐渐增大,当添加量为0. 032 4 mmol最大值7. 734 s~(-1)。
        The effects of dodecylamine(DDA) and 2-octanol on the characteristics and dispersion of bubbles in a flo-tation column was investigated in this study. Bubble size distribution was measured using the Mc Gill bubble size analy-zer,surface tension was measured using the surface tensionmeter,and aeration rate was researched using the measuringcylinder technique. Furthermore,bubble adsorption density and surface area flux were analyzed. With the increase inreagent concentration,the bubble size decreased until the critical coalescence concentration(CCC) to 0. 630 3 and0. 602 0 mm of DDA and 2-octanol,respectively,and the concentrations(CCC99),at which bubble size is reduced by99% from that with water only,were analyzed to be 0. 081 1 and 0. 070 3 mmol/L for DDA and 2-octanol,respective-ly. The bubble size in DDA solution was found to be larger than that in 2-octanol solution with an equal solution con-centration. Surface tension was found to linearly decrease with the increase in reagent concentration,and the surfacetension of DDA was lower than that of 2-octanol under the same concentration. Aeration rate increased as the reagentconcentration increased,and the aeration rate of DDA was larger than that of 2-octanol. The adsorption density of DDAand 2-octanol at CCC was calculated to be 0. 966 2 and 0. 282 7 μmol/m2,and the bubble surface area flux of DDAwas smaller than that of 2-octanol while the concentration was above CCC. With the increase of DDA addition in 2-oc-tanol solution,the CCC,constantD32,surface tension and adsorption density decreased,but aeration rate and bubblesurface area flux increased. With a DDA addition of 0. 032 4 mmol/L,the minimum CCC,constantD32 and adsorptiondensity were obtained at 0. 021 6 mmol/L,0. 583 3 mm and 0. 154 0 μmol/m2,respectively,while the maximum bub-ble surface area flux was calculated to be 7. 734 s~(-1).
引文
[1]ZHU H Z,SONG S X,VALDIVIESO A L,et al.Effects of rectifying bundles on desliming ponds[J].International Journal of Coal Preparation and Utilization,2018,(2):1-10.
    [2]李国胜,韩加展,邓丽君,等.气泡在煤炭表面的碰撞和黏附过程[J].煤炭学报,2016,41(11):2841-2846.LI Guosheng,HAN Jiazhan,DENG Lijun,et al.Collision and adhesion process of air bubbles on coal surface[J].Journal of China Coal Society,2016,41(11):2841-2846.
    [3]朱宏政,王海艳,王海楠,等.机械搅拌式浮选装置中气泡粒径分布规律[J].煤炭学报,2018,43(4):1140-1145.ZHU Hongzheng,WANG Haiyan,WANG Hainan,et al.Bubble size distribution in a mechanical flotation device[J].Journal of China Coal Society,2018,43(4):1140-1145.
    [4]GRAU R A,LASKOWSKI J S,HEISKANEN K.Effect of frothers on bubble size[J].International Journal of Mineral Processing,2005,76(4):225-233.
    [5]沈亮,王怀法.动力煤反浮选试验研究[J].煤炭学报,2015,40(S2):464-470.SHEN Liang,WANG Huaifa.Experimental study on reverse flotation of steam coal[J].Journal of China Coal Society,2015,40(S2):464-470.
    [6]CHO Y S,LASKOWSKI J S.Effect of flotation frothers on bubble size and foam stability[J].International Journal of Mineral Processing,2002,64(2-3):69-80.
    [7]GRAU R A,LASKOWSKI J S.Role of frothers in bubble generation and coalescence in a mechanical flotation cell[J].Canadian Journal of Chemical Engineering,2006,84(2):170-182.
    [8]张世杰,刘文礼,赵树凯,等.浮选气泡粒度分布规律[J].煤炭学报,2015,40(2):445-449.ZHANG Shijie,LIU Wenli,ZHAO Shukai,et al.Bubble size distribution rules in flotation cell[J].Journal of China Coal Society,2015,40(2):445-449.
    [9]LASKOWSKI J S,TLHONE T,WILLIAMS P,et al.Fundamental properties of the polyoxypropylene alkyl ether flotation frothers[J].International Journal of Mineral Processing,2003,72(1):289-299.
    [10]ITYOKUMBUL M T,KOSARIC N,BULANI W.Effect of fine solids and frother on gas hold-up and liquid mixing in a flotation column[J].Minerals Engineering,1995,8(11):1369-1380.
    [11]FINCH J A,NESSET J E,ACUNA C.Role of frother on bubble production and behaviour in flotation[J].Minerals Engineering,2008,21(12):949-957.
    [12]TAN Y H,RAFIEI A A,ELMAHDY A.Bubble size,gas holdup and bubble velocity profile of some alcohols and commercial frothers[J].International Journal of Mineral Processing,2013,119:1-5.
    [13]陈东,张明,樊学赛,等.高气泡表面积通量充气器气泡特征参数试验研究[J].有色金属(选矿部分),2016(5):73-78.CHEN Dong,ZHANG Ming,FAN Xuesai,et al.Experimental research of air bubble characteristics by air generator with high bubble surface area flux[J].Nonferrous Metals(Mineral Processing Section),2016(5):73-78.
    [14]陈泉源.实验室规模高气泡表面积通量浮选柱的原理、研制及应用[D].长沙:中南大学,2002.CHEN Quanyuan.Principle,development and application of flotation column producing high bubble surface araea flux in lab scale[D].Changsha:Central South University,2002.
    [15]胡卫新,刘炯天,李振,等.旋流-静态微泡浮选柱气含率影响因素研究[J].中国矿业大学学报,2010,39(4):617-621.HU Weixin,LIU Jiongtian,LI Zhen,et al.Research on factors influencing gas hold-up of a cyclonic-static micro-bubble flotation column[J].Journal of China University of Mining&Technology,2010,39(4):617-621.
    [16]廖寅飞,刘炯天,李树磊.煤泥柱浮选的承载能力与气含率轴向分布[J].煤炭学报,2013,38(8):1443-1447.LIAO Yinfei,LIU Jiongtian,LI Shulei.Carrying capacity and axial distribution of gas holdup in coal column flotation[J].Journal of China Coal Society,2013,38(8):1443-1447.
    [17]ARAYA R,GOMEZ C,FINCH J,et al.Characterization of frother effects on gas dispersion in a Jameson cell[A].XXVII International Mineral Processing Congress[C].2014:145-154.
    [18]瞿望.锡林浩特褐煤反浮选试验研究[D].徐州:中国矿业大学,2014.QU Wang.Experimental study on the reverse flotation of the lignite from Xilin haote[D].Xuzhou:China University of Mining and Technology,2014.
    [19]张世杰,刘文礼,赵树凯,等.起泡剂与充气量对浮选气泡粒度影响规律研究[J].煤炭工程,2015,47(3):119-121.ZHANG Shijie,LIU Wenli,ZHAO Shukai,et al.Research on effect of frother and gas rate on bubble size in flotation[J].Coal Engineering,2015,47(3):119-121.
    [20]CORONA-ARROYO M A,VALDIVIESO A L,LASKOWSKI J S,et al.Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column[J].Minerals Engineering,2015,81:109-115.
    [21]吴大为.浮游选煤技术[M].徐州:中国矿业大学出版社,2004.WU Dawei.Coal flotation technology[M].Xuzhou:China University of Mining and Technology Press,2004.
    [22]NESSET J E,FINCH J A,GOMEZ C O.Operating variables affecting the bubble size in forced-air mechanical flotation machines[A].Proceedings Aus IMM 9th Mill Operators’Conference[C].2007:66-75.
    [23]ZHANG W,NESSET J E,RAO R.Characterizing frothers through critical coalescence concentration(ccc)95-hydrophile-lipophile balance(HLB)relationship[J].Minerals,2012,2(3):208-227.
    [24]CHO Y S,LASKOWSKI J S.Effect of flotation frothers on bubble size and foam stability[J].International Journal of Mineral Processing,2002,64:69-80.
    [25]边炳鑫,陈清如,韦鲁滨.药剂磁化处理对煤泥浮选效果影响的研究[J].中国矿业大学学报,2004,33(3):343-346.BIAN Bingxin,CHEN Qingru,WEI Lubin.Research on coal slime flotation using magnetized agents[J].Journal of China University of Mining&Technology,2004,33(3):343-346.
    [26]ZHANG W.The effects of frothers and particles on the characteristics of pulp and froth properties in flotation-A critical review[J].Journal of Minerals and Materials Characterization and Engineering,2016,4(4):251-269.
    [27]邓丽君,李国胜,曹亦俊,等.浮选起泡剂对气泡兼并行为的影响研究[J].中国矿业大学学报,2017,46(2):410-414.DENG Lijun,LI Guosheng,CAO Yijun,et al.Effect of flotation frothers on bubbles coalescence behavior[J].Journal of China University of Mining&Technology,2017,46(2):410-414.
    [28]WILLIAMS E F,WOODBERRY N T,DIXON J K.Purification and surface tension properties of alkyl sodium sulfosuccinates[J].Journal of Colloid Science,1957,12(5):452-459.
    [29]张文慧.羧甲基淀粉烷基酸酯的制备及其聚集体的增溶性质研究[D].大连:大连工业大学,2015.ZHANG Wenhui.Study on the preparation of amphipathic starch and the solubilization properties of aggregates[D].Dalian:Dalian University of Technology,2015.
    [30]松全元.浮选时捕收剂和起泡剂的相互作用[J].国外金属矿选矿,1974(6):52.SONG Quanyuan.Interaction between collector and frother in flotation[J].Metallic Ore Dressing Abroad,1974(6):52.
    [31]陈泉源,张泾生,王淀佐,等.高气泡表面积通量浮选柱浮选硫化铜矿参数的研究[J].有色金属工程,2006,58(4):48-53.CHEN Quanyuan,ZHANG Jingsheng,WANG Dianzuo,et al.Study on parameters of copper sulfide ore flotation in high bubble surface area flux flotation column[J].Nonferrous Metals,2006,58(4):48-53.
    [32]ZHU H Z,VALDIVIESO A L,ZHU J B,et al.Effect of dodecylamine-frother blend on bubble rising characteristics[J].Powder Technology,2018,338:586-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700