用户名: 密码: 验证码:
制备方法对铁钛复合氧化物磷吸附性能的影响:共沉淀法与机械物理混合法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Preparation Methods on Phosphate Adsorption by Iron-Titanium Binary Oxide:Coprecipitation and Physical Mixing
  • 作者:仲艳 ; 王建燕 ; 陈静 ; 张高生
  • 英文作者:ZHONG Yan;WANG Jiang-yan;CHEN Jing;ZHANG Gao-sheng;Key Laboratory of Coastal Environmental Processes and Ecological Remediation,Research Center for Coastal Environment Engineering and Technology of Shandong Province,Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Water Safety and Protection in Pearl River Delta,Ministry of Education,Guangzhou University;
  • 关键词:铁钛复合氧化物 ; 共沉淀 ; 机械物理混合 ; ; 吸附
  • 英文关键词:iron-titanium binary oxide;;coprecipitation;;physical mixing;;phosphate;;adsorption
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院烟台海岸带研究所中国科学院海岸带环境过程与生态修复重点实验室山东省海岸带环境工程技术研究中心;中国科学院大学;广州大学珠江三角洲水质安全与保护协同创新中心暨省部共建重点实验室;
  • 出版日期:2018-01-24 11:07
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(51478457);; 中国科学院烟台海岸带研究所自主部署项目(YICY755021012)
  • 语种:中文;
  • 页:HJKZ201807029
  • 页数:10
  • CN:07
  • ISSN:11-1895/X
  • 分类号:231-240
摘要
为了研究制备方法对金属复合氧化物表面性质与吸附性能的影响,本文分别采用共沉淀法与机械物理混合法制备了铁钛复合氧化物CFe-Ti与MFe-Ti.采用SEM、BET、XRD与FTIR等表征技术,研究了两种铁钛复合氧化物CFe-Ti与MFe-Ti的形貌结构、比表面积、表面羟基浓度等表面特性;通过批式吸附实验,考察了其磷吸附性能.结果表明,与纯的氧化物Fe OOH及TiO_2相比,共沉淀法制备的CFe-Ti纳米颗粒更疏松,孔结构更发达,表面羟基浓度更高,CFe-Ti的最大磷吸附容量达40.6mg·g~(-1),高于纯Fe OOH(27.2 mg·g~(-1))与TiO_2(16.7 mg·g~(-1)),分别为其1.5倍和2.4倍,展示了显著的协同效应.而MFe-Ti的形貌结构和表面性质与Fe OOH及TiO_2相比变化不大,其磷最大吸附容量为22.7 mg·g~(-1),不仅明显低于CFe-Ti,且低于纯Fe OOH,表明未产生协同效应.研究也表明,磷在CFe-Ti与MFe-Ti表面的吸附性质未发生变化,均通过形成内层表面络合物而发生了化学吸附.因此,金属复合氧化物的表面性质和吸附性能与其制备方法密切相关,与机械物理混合法相比,共沉淀法是一种更为简单经济制备高效能铁钛复合氧化物磷吸附剂的方法.
        To investigate the effect of preparation methods on surface characteristics and adsorption properties of the formed metal composite oxides,two kinds of iron-titanium binary oxides were synthesized by a coprecipitation method or a physical mixing method and were denoted asCFe-Ti andMFe-Ti,respectively. The preparedCFe-Ti andMFe-Ti were systematically characterized using SEM,XRD,BET,and FTIR techniques. Their phosphate adsorption behaviors were also studied via batch adsorption experiments. Compared with pure Fe OOH and TiO_2,CFe-Ti exhibited a looser nanostructure with more pore and surface hydroxyls. Moreover,theCFe-Ti had a high maximal phosphorus adsorption capacity of 40. 6 mg·g~(-1),which is about 1. 5 times and 2. 4 times as high as that of pure Fe OOH( 27. 2 mg·g~(-1)) and TiO_2( 16. 7 mg·g~(-1)),respectively. This suggests that an obvious synergistic effect is present in theCFe-Ti system. However,the morphology and structure ofMFe-Ti were not significantly different from those of pure Fe OOH and TiO_2. The maximal adsorption capacity ofMFe-Ti was 22. 7 mg·g~(-1),which is obviously lower than that ofCFe-Ti and even lower than that of pure Fe OOH. Evidently,there is no synergistic effect in theMFe-Ti system. In addition,phosphate adsorption mechanisms at the surface of CFe-Ti andMFe-Ti were the same as those of their component oxides,and chemical adsorption occurred at the surface of the oxides through the formation of inner-sphere complexes. Therefore,the surface characteristics and adsorption properties of the metal composite oxides were closely related to their preparation methods. The coprecipitation method was a simpler and more economical way than the physical mixing method to fabricate a highly effective iron-titanium binary oxide for phosphate adsorption.
引文
[1]庆旭瑶,任玉芬,吕志强,等.重庆市主城区次级河流总氮总磷污染特征分析及富营养化评价[J].环境科学,2015,36(7):2446-2452.Qing X Y,Ren Y F,LüZ Q,et al.Characteristics of total nitrogen and total phosphorus pollution and eutrophication assessment of secondary river in urban Chongqing[J].Environmental Science,2015,36(7):2446-2452.
    [2]李如忠,刘科峰,钱靖,等.合肥市区典型景观水体氮磷污染特征及富营养化评价[J].环境科学,2014,35(5):1718-1726.Li R Z,Liu K F,Qian J,et al.Nitrogen and phosphate pollution characteristics and eutrophication evaluation for typical urban landscape waters in Hefei City[J].Environmental Science,2014,35(5):1718-1726.
    [3]潘伟亮,何强,艾海男,等.重庆典型区域雨水管道沉积物中氮磷污染特征分析[J].环境科学学报,2015,35(1):257-261.Pan W L,He Q,Ai H N,et al.Analysis on characteristics of nitrogen and phosphorus in storm sewer sediments in Chongqing City[J].Acta Scientiae Circumstantiae,2015,35(1):257-261.
    [4]施川,张盼月,郭建斌,等.污泥生物炭的磷吸附特性[J].环境工程学报,2016,10(12):7202-7208.Shi C,Zhang P Y,Guo J B,et al.Phosphorus adsorption performance onto sewage sludge biochar[J].Chinese Journal of Environmental Engineering,2016,10(12):7202-7208.
    [5]李柏林,梁亚楠,张程琛,等.粉煤灰-铝土矿改性制备铝铁复合混凝剂的除磷性能及混凝机理研究[J].环境科学学报,2016,36(7):2503-2511.Li B L,Liang Y N,Zhang C C,et al.Preparation of monohydrallite-coal ash composite flocculant:phosphorus removal performance and flocculation mechanism[J].Acta Scientiae Circumstantiae,2016,36(7):2503-2511.
    [6]朱培颖,李大鹏,于胜楠.灼烧净水污泥投加方式对磷吸附和磷形态的影响[J].环境科学,2017,38(5):1957-1964.Zhu P Y,Li D P,Yu S N.Effect of different adding means of ignited water purification sludge on phosphorus adsorption and forms[J].Environmental Science,2017,38(5):1957-1964.
    [7]李海宁,陈静,李秋梅,等.铁锰复合氧化物包覆海砂的吸附除磷研究[J].环境科学学报,2016,36(3):880-886.Li H N,Chen J,Li Q M,et al.Adsorptive removal of phosphate from water using Fe-Mn binary oxide coated sea sand[J].Acta Scientiae Circumstantiae,2016,36(3):880-886.
    [8]张晓磊,魏亮亮,赵庆良,等.离子交换法去除城市污水处理厂二级处理出水中磷的效能及机理[J].黑龙江大学自然科学学报,2013,30(5):653-657.Zhang X L,Wei L L,Zhao Q L,et al.Performance and mechanism of efficient recovery of phosphorus from secondary effluent of urban wastewater treatment plant using ion exchange[J].Journal of Natural Science of Heilongjiang University,2013,30(5):653-657.
    [9]Ebbers B,Ottosen L M,Jensen P E.Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus[J].Electrochimica Acta,2015,181:90-99.
    [10]Ge Y,Wang X C,Dzakpasu M,et al.Characterizing phosphorus removal from polluted urban river water by steel slags in a vertical flow constructed wetland[J].Water Science and Technology,2016,73(11):2644-2653.
    [11]Li M X,Liu J Y,Xu Y F,et al.Phosphate adsorption on metal oxides and metal hydroxides:a comparative review[J].Environmental Reviews,2016,24(3):319-332.
    [12]Huang W Y,Zhang Y M,Dan L.Adsorptive removal of phosphate from water using mesoporous materials:a review[J].Journal of Environmental Management,2017,193:470-482.
    [13]Fang L P,Huang L Z,Holm P E,et al.Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal[J].Journal of Materials Chemistry A,2015,3(14):7505-7512.
    [14]Cao D,Jin X Y,Gan L,et al.Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant[J].Chemosphere,2016,159:23-31.
    [15]Xie J,Lin Y,Li C J,et al.Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide[J].Powder Technology,2015,269:351-357.
    [16]Luo Z,Zhu S Y,Liu Z M,et al.Study of phosphate removal from aqueous solution by zinc oxide[J].Journal of Water and Health,2015,13(3):704-713.
    [17]Qin K,Li F,Xu S,et al.Sequential removal of phosphate and cesium by using zirconium oxide:a demonstration of designing sustainable adsorbents for green water treatment[J].Chemical Engineering Journal,2017,322:275-280.
    [18]Johir M A H,Pradhan M,Loganathan P,et al.Phosphate adsorption from wastewater using zirconium(IV)hydroxide:kinetics,thermodynamics and membrane filtration adsorption hybrid system studies[J].Journal of Environmental Management,2016,167:167-174.
    [19]Pan B C,Han F C,Nie G Z,et al.New strategy to enhance phosphate removal from water by hydrous manganese oxide[J].Environmental Science&Technology,2014,48(9):5101-5107.
    [20]Zaman M I,Mustafa S,Khan S,et al.The effects of phosphate adsorption on the surface characteristics of Mn oxides[J].Separation Science and Technology,2013,48(11):1709-1716.
    [21]付军,范芳,李海宁,等.铁锰复合氧化物/壳聚糖珠:一种环境友好型除磷吸附剂[J].环境科学,2016,37(12):4882-4890.Fu J,Fan F,Li H N,et al.Fe-Mn binary oxide impregnated chitosan bead(FMCB):an environmental friendly sorbent for phosphate removal[J].Environmental Science,2016,37(12):4882-4890.
    [22]Su Y,Yang W Y,Sun W Z,et al.Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J].Chemical Engineering Journal,2015,268:270-279.
    [23]De Sousa A F,Braga T P,Gomes E C C,et al.Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide[J].Chemical Engineering Journal,2012,210:143-149.
    [24]杨永珠,江映翔,赵李丽,等.铁-镧系合金氧化物污水除磷及再生[J].环境工程学报,2014,8(1):236-241.Yang Y Z,Jiang Y X,Zhao L L,et al.Phosphorous removal from wastewater by iron-lanthanum based alloy oxides and their regeneration[J].Chinese Journal of Environmental Engineering,2014,8(1):236-241.
    [25]吴秋月,陈静,张伟,等.新型纳米结构铈锰复合氧化物的磷吸附行为与机制研究[J].环境科学学报,2015,35(6):1824-1832.Wu Q Y,Chen J,Zhang W,et al.Adsorption of phosphate on a novel nanostructured Ce-Mn binary oxide:Behavior and mechanism[J].Acta Scientiae Circumstantiae,2015,35(6):1824-1832.
    [26]Wang X H,Liu F F,Lu L,et al.Individual and competitive adsorption of Cu(Ⅵ)and phosphate onto synthetic Fe-Al hydroxides[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,423:42-49.
    [27]Chen L,He B Y,He S,et al.Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism[J].Powder Technology,2012,227:3-8.
    [28]Zhang G S,Liu H J,Liu R P,et al.Removal of phosphate from water by a Fe-Mn binary oxide adsorbent[J].Journal of Colloid and Interface Science,2009,335(2):168-174.
    [29]Dou X M,Li Y H,Mohan D,et al.A property-performance correlation and mass transfer study of As(Ⅴ)adsorption on three mesoporous aluminas[J].RSC Advances,2016,6(84):80630-80639.
    [30]Lu J B,Liu D F,Hao J,et al.Phosphate removal from aqueous solutions by a nano-structured Fe-Ti bimetal oxide sorbent[J].Chemical Engineering Research and Design,2015,93:652-661.
    [31]王艺,吕建波,刘东方,等.介孔铁锆复合氧化物的制备及其对Cr(Ⅵ)的吸附性能[J].环境工程学报,2015,9(6):2589-2594.Wang Y,LüJ B,Liu D F,et al.Synthesis of mesoporous ironzirconium composite oxide and its adsorption property of Cr(Ⅵ)[J].Chinese Journal of Environmental Engineering,2015,9(6):2589-2594.
    [32]Zhu J,Baig S A,Sheng T T,et al.Fe3O4and Mn O2assembled on honeycomb briquette cinders(HBC)for arsenic removal from aqueous solutions[J].Journal of Hazardous Materials,2015,286:220-228.
    [33]Chen J,Wang J Y,Zhang G S,et al.Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J].Chemical Engineering Journal,2018,334:1518-1526.
    [34]Wang X M,Hu Y F,Tang Y D,et al.Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces[J].Environmental Science:Nano,2017,4(11):2193-2204.
    [35]Khare N,Martin J D,Hesterberg D.Phosphate bonding configuration on ferrihydrite based on molecular orbital calculations and XANES fingerprinting[J].Geochimica et Cosmochimica Acta,2007,71(18):4405-4415.
    [36]Khare N,Hesterberg D,Martin J D.XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals[J].Environmental Science&Technology,2005,39(7):2152-2160.
    [37]Wang X M,Li W,Harrington R,et al.Effect of ferrihydrite crystallite size on phosphate adsorption reactivity[J].Environmental Science&Technology,2013,47(18):10322-10331.
    [38]Wang N,Feng J T,Chen J,et al.Adsorption mechanism of phosphate by polyaniline/Ti O2composite from wastewater[J].Chemical Engineering Journal,2017,316:33-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700