用户名: 密码: 验证码:
高锂盐含量聚氨酯基固态电解质的制备与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Solid Electrolytes Based on Polyurethane with High Lithium Salt Content
  • 作者:史高健 ; 马沛宇 ; 宋有信 ; 鲍俊杰 ; 黄毅萍 ; 许戈文
  • 英文作者:SHI Gao-jian;MA Pei-yu;SONG You-xin;BAO Jun-jie;HUANG Yi-ping;XU Ge-wen;Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, College of Chemistry & Chemical Engineering, Anhui University;
  • 关键词:聚合物电解质 ; 锂电池 ; 聚碳酸酯 ; 聚氨酯 ; 有机电化学与工业
  • 英文关键词:polymer electrolyte;;lithium battery;;polycarbonate;;polyurethane;;electro-organic chemistry and industry
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:安徽大学化学化工学院安徽省绿色高分子重点实验室;
  • 出版日期:2018-12-22 19:48
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:安徽省自然科学基金项目(1808085QE173);; 安徽省高校科学研究项目(KJ2017A031)~~
  • 语种:中文;
  • 页:JXHG201904030
  • 页数:7
  • CN:04
  • ISSN:21-1203/TQ
  • 分类号:203-209
摘要
以异佛尔酮二异氰酸酯、聚碳酸酯二元醇和一缩二乙二醇为原料,合成硬段质量分数为30%的聚碳酸酯型聚氨酯(PCPU),将合成的聚氨酯和双三氟甲烷磺酰亚胺锂(LiTFSI)复合制得不同锂盐质量分数的固态聚合物电解质(SPE)。通过红外光谱分析了聚氨酯结构,采用TG、DSC测试了聚氨酯及电解质的热学性能,并采用交流阻抗、线性扫描伏安测试探究了不同LiTFSI质量分数对电解质电化学性能的影响。结果表明,随着LiTFSI质量分数的增加,聚氨酯基固态聚合物电解质的室温离子电导率呈现先增大后减小再增大的趋势,当锂盐质量分数为70%时,制备的电解质离子电导率达到最大值(1.28×10~(–8)S/cm),以此固态电解质与LiFePO4正极组装的固态电池在60℃、0.2 C电流密度时放电比容量为153 mA·h/g,循环100次容量保持率为84%。
        Polycarbonate polyurethane(PCPU) with 30% mass fraction of hard segment was synthesized from isophorone diisocyanate, polycarbonate diol and diethylene glycol. The synthesized PCPU and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI) were combined to prepare solid polymer electrolytes(SPEs)with various lithium salt mass fractions. The structure of polyurethane was analyzed by infrared spectroscopy. The thermal properties of polyurethane and electrolytes were tested by TG and DSC. The effects of different Li TFSI mass fractions on the electrochemical properties of the prepared electrolytes were investigated by AC impedance and linear sweep voltammetry. The results indicated that with the increase of LiTFSI mass fraction, the ionic conductivity of PCPU-based solid polymer electrolyte at room temperature firstly increases then decreases and then increases. Especially, when the mass fraction of Li TFSI was 70%, the ionic conductivity of the resulting solid polymer electrolyte reached the maximum value(1.28×10~(–8) S/cm) among the as-prepared electrolytes. The all-solid-state battery using this PCPUbased electrolyte and LiFePO4 delivered the discharge capacity of 153 mA·h/g at rate of 0.2 C at 60 ℃, and the capacity retention reached 84% after 100 cycles.
引文
[1]Mauger A,Armand M,Julien C M,et al.Challenges and issues facing lithium metal for solid-state rechargeable batteries[J].Journal of Power Sources,2017,353:333-342.
    [2]Xu K.Electrolytes and interphases in Li-ion batteries and beyond[J].Chemical Reviews,2014,114(23):11503-11618.
    [3]Porcarelli L,Shaplov A S,Salsamendi M,et al.Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries[J].ACS Applied Materials&Interfaces,2016,8(16):10350-10359.
    [4]Zhang J,Zhao N,Zhang M,et al.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries:Dispersion of garnet nanoparticles in insulating polyethylene oxide[J].Nano Energy,2016,28:447-454.
    [5]Sun B,Mindemark J,Morozov E V,et al.Ion transport in polycarbonate based solid polymer electrolytes:Experimental and computational investigations[J].Physical Chemistry Chemical Physics,2016,18(14):9504-9513.
    [6]Kimura K,Yajima M,Tominaga Y.A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J].Electrochemistry Communications,2016,66:46-48.
    [7]Yue H,Li J,Wang Q,et al.Sandwich-like poly(propylene carbonate)based electrolyte for ambient-temperature solid-state lithium ion batteries[J].Acs Sustainable Chemistry&Engineering,2017,6(1):268-274.
    [8]Morioka T,Ota K,Tominaga Y.Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes[J].Polymer,2016,84:21-26.
    [9]Mindemark J,Mogensen R,Smith M J,et al.Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries[J].Electrochemistry Communications,2017,77:58-61.
    [10]Sun B,Mindemark J,Edstr?m K,et al.Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J].Solid State Ionics,2014,262:738-742.
    [11]Xu K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J].Chemical Reviews,2004,104(10):4303-4418.
    [12]Kimura K,Yajima M,Tominaga Y.A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J].Electrochemistry Communications,2016,66:46-48.
    [13]Tao C,Luo Z,Bao J,et al.Effects of macromolecular diol containing different carbamate content on the micro-phase separation of waterborne polyurethane[J].Journal of Materials Science,2018,53(11):8639-8652.
    [14]Kwei T K.Phase separation in segmented polyurethanes[J].Journal of Applied Polymer Science,2010,27(8):2891-2899.
    [15]He W,Cui Z,Liu X,et al.Carbonate-linked poly(ethylene oxide)polymer electrolytes towards high performance solid state lithium batteries[J].Electrochimica Acta,2017,225:151-159.
    [16]Meabe L,Lago N,Rubatat L,et al.Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes[J].Electrochimica Acta,2017,237:259-266.
    [17]Kimura K,Motomatsu J,Tominaga Y.Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability[J].Journal of Polymer Science B,Polymer Physics,2016,54(23):2442-2447.
    [18]Zhou X,Yin Y,Wang Z,et al.Effect of hot pressing on the ionic conductivity of the PEO/LiCF3SO3 based electrolyte membranes[J].Solid State Ionics,2011,196(1):18-24.
    [19]Kimura K,Yajima M,Tominaga Y.A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J].Electrochemistry Communications,2016,66:46-48.
    [20]Ferry A,Edman L,Forsyth M,et al.NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on Li CF3SO3 and PAN[J].Electrochimica Acta,2000,45(8/9):1237-1242.
    [21]Wu B,Wang L,Li Z,et al.Performance of“polymer-in-salt”electrolyte PAN-LiTFSI enhanced by graphene oxide filler[J].Journal of the Electrochemical Society,2016,163(10):A2248-A2252.
    [22]Long L,Wang S,Xiao M,et al.Polymer electrolytes for lithium polymer batteries[J].Journal of Materials Chemistry A,2016,4(26):10038-10069.
    [23]Mac Leod S K.Moisture determination using Karl Fischer titrations[J].Analytical chemistry,1991,63(10):557A-566A.
    [24]Zhou J,Zuo P,Liu Y,et al.Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide)and related applications[J].Science China Chemistry,2018,61(9):1062-1087.
    [25]Shim J,Kim L,Kim H J,et al.All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid[J].Polymer,2017,122:222-231.
    [26]Forsyth M,Macfarlane D R,Hill A J.Glass transition and free volume behaviour of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes[J].Electrochimica Acta,2000,45(8):1243-1247.
    [27]Xu W,Wang L M,Angell C A.“PolyMOB”-lithium salt complexes:From salt-in-polymer to polymer-in-salt electrolytes[J].Electrochimica Acta,2003,48(14/15/16):2037-2045.
    [28]Chen L,Fan L.Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J].Energy Storage Materials,2018,15:37-45.
    [29]Vanesa G P,Costa V,Colera M.Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings[J].Progress in Organic Coatings,2011,71(2):136-146.
    [30]Long L,Wang S,Xiao M,et al.Polymer electrolytes for lithium polymer batteries[J].Journal of Materials Chemistry A,2016,4(26):10038-10069.
    [31]Carvalho L M,Guegan P,Cheradame H,et al.Variation of the mesh size of PEO-based networks filled with TFSILi:From an Arrhenius to WLF type conductivity behavior[J].European Polymer Journal,2000,36(2):401-409.
    [32]Wang S,Jeung S,Min K.The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes[J].Polymer,2010,51(13):2864-2871.
    [33]Zhao Y,Huang Z,Chen S,et al.A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J].Solid State Ionics,2016,295:65-71.
    [34]Yamaguchi T,Miyata F,Nakao S I.Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell[J].Journal of Membrane Science,2003,214(2):283-292.
    [35]Kimura K,Yajima M,Tominaga Y.A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J].Electrochemistry Communications,2016,66:46-48.
    [36]Zhang J,Zhao N,Zhang M,et al.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries:dispersion of garnet nanoparticles in insulating polyethylene oxide[J].Nano Energy,2016,28:447-454.
    [37]Guo Y,Li H,Zhai T.Reviving lithium-metal anodes for nextgeneration high-energy batteries[J/OL].Advanced Materials,2017,29:1700007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700