用户名: 密码: 验证码:
高非线性光纤正常色散区脉冲尾部非频移分量演化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of non-frequency shift components of pulse tail in normal dispersion region of highly nonlinear fiber
  • 作者:孙剑 ; 李唐军 ; 王目光 ; 贾楠 ; 石彦超 ; 王春灿 ; 冯素春
  • 英文作者:Sun Jian;Li Tang-Jun;Wang Mu-Guang;Jia Nan;Shi Yan-Chao;Wang Chun-Can;Feng Su-Chun;Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University;College of Physics and Electrical Engineering, Anyang Normal University;Beijing Institute of Astronautical System Engineering;
  • 关键词:超连续谱 ; 非线性光纤光学 ; 受激拉曼散射 ; 交叉相位调制
  • 英文关键词:supercontinuum;;nonlinear fiber optics;;stimulated Raman scattering;;cross-phase modulation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室;安阳师范学院物理与电气工程学院;北京宇航系统工程研究所;
  • 出版日期:2019-06-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61775015,61475015,61605003);; 中央高校基本科研业务费(批准号:2018JBZ109)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911022
  • 页数:10
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:186-195
摘要
基于广义非线性薛定谔方程(对皮秒双曲正割光脉冲在高非线性光纤(highly nonlinear fiber, HNLF)正常色散区传输时尾部非频移分量的演化情况进行了理论研究.研究结果表明:交叉相位调制(cross-phase modulation, XPM)和受激拉曼散射(stimulated Raman scattering, SRS)在其演化过程中起主导作用,而三阶色散对其直接影响较小.在XPM效应的作用下,处于脉冲前沿和后沿尾部的非频移分量逐渐减弱,其光谱分别发生红移和蓝移,这一过程具有对称性; SRS会加速前沿尾部非频移分量的减弱过程,而减缓后沿的减弱过程,这一现象在脉冲峰值功率较高时更为明显.从脉冲尾部非频移分量演化角度分析了啁啾脉冲在HNLF正常色散区的光谱和波形特性.
        Supercontinuum generated in normal dispersion region of highly nonlinear fiber(HNLF) is widely used in signal processing and communication benefiting from its good flatness and high coherence. Because of the normal dispersion, optical wave breaking(OWB) occurs when non-frequency shift components and frequency shift components caused by self-phase modulation(SPM) overlap in time domain, and ends when non-frequency shift components disappear. The evolution of non-frequency shift components at the front and rear edge of optical pulse play an essential role in the supercontinuum generation process. In this paper, the evolution of non-frequency shift components in normal dispersion region is numerically calculated and analyzed based on generalized nonlinear Schr?dinger equation. The results demonstrate that non-frequency shift components shrink gradually as the pulse propagates in the normal dispersion region. Cross-phase modulation(XPM) and stimulated Raman scattering(SRS) play a major role in this process, while the third-order dispersion imposes little effect on it. Because of XPM, non-frequency shift components at the front and rear edge shrink gradually,and keep red shifting and blue-shifting respectively. The influence of XPM on the non-frequency shift components at both edges is symmetrical. However, the influence of SRS on the evolution of non-frequency-shift components at both edges is asymmetric. At the front edge, SRS transfers the energy from non-frequency shift component to frequency shift component, which is opposite to that at the rear edge. At the front edge, SRS accelerates the shrinking process of the non-frequency shift component, while it slows down the shrinking process at the rear edge. And this asymmetric effect is more obvious when the peak power of the pulse is higher and SRS is more efficient. The evolution of the non-frequency shift components of chirped pulses propagating in the normal dispersion region is studied. Comparing with the unchirped pulse, the non-frequency shift components at the front and rear edge of the chirped pulse have different wavelengths. For the negative chirped pulse, the wavelength spacing between the overlapped frequency-shift components and non-frequency shift components is larger, which is easier to satisfy the SRS gain range. Therefore, the evolution of non-frequencyshift components at the front and rear edge of the negative chirped pulse are more asymmetric due to the higher SRS efficiency. For positive chirped pulses, the wavelength spacing between the overlapped components is difficult to satisfy the SRS gain range. The evolution of non-frequency-shift components in the positive chirped pulses is more symmetrical due to the lower SRS efficiency.
引文
[1]Nguyen-The Q,Matsuura M,Kishi N 2014 IEEE Photon.Technol.Lett.26 1882
    [2]Peacock A C,Campling J,Runge A F J,Ren H,Shen L,Aktas O,Horak P,Healy N,Gibson U J,Ballato J 2018IEEE J.Select.Top.Quantum Electron.24 3
    [3]Takada K,Yamada H,Okamoto K 1999 Electron.Lett.35824
    [4]Hu H 2017 Ph.D.Dissertation(Connecticut:University of Connecticut)
    [5]Yang T,Dong J,Liao S,Huang D,Zhang X 2013 Opt.Express 21 8508
    [6]Ohara T,Takara H,Yamamoto T,Masuda H,Morioka T,Abe M,Takahashi H 2006 J.Lightw.Technol.24 2311
    [7]Yu S,Bao F,Hu H 2018 IEEE Photon.J.10 1
    [8]Wu R,Torres-Company V,Leaird D E,Weiner A M 2013Opt.Express 21 6045
    [9]Husakou A V,Herrmann J 2001 Phys.Rev.Lett.87 203901
    [10]Liu C 2012 Ph.D.Dissertation(Beijing:Beijing Jiaotong University)(in Chinese)[刘楚2012博士学位论文(北京:北京交通大学)]
    [11]Dudley J M,Genty G,Coen S 2006 Rev.Mod.Phys.78 1135
    [12]Hilligs?e K M,Andersen T V,Paulsen H N,Nielsen C K,M?lmer K,Keiding S,Kristiansen R,Hansen K P,Larsen J J2004 Opt.Express 12 1045
    [13]Gu X,Kimmel M,Shreenath A,Trebino R,Dudley J,Coen S,Windeler R 2003 Opt.Express 11 2697
    [14]Agrawal G P 2006 Nonlinear Fiber Optics(4th Ed.)(San Diego:Claif)p31
    [15]Kawanishi S,Takara H,Uchiyama K,Shake I,Mori K 1999Electron.Lett.35 826
    [16]Tomlinson W J,Stolen R H,Johnson A M 1985 Opt.Lett.10457
    [17]Finot C,Kibler B,Provost L,Wabnitz S 2008 J.Opt.Soc.Am.B 25 1938
    [18]Heidt A M,Hartung A,Bartelt H 2016 Generation of Ultrashort and Coherent Supercontinuum Light Pulses in AllNormal Dispersion Fibers(Berlin:Springer)pp 247-280
    [19]Grischkowsky D,Courtens E,Armstrong J A 1973 Phys.Rev.Lett.31 422
    [20]Lin Q,Agrawal G P 2006 Opt.Lett.31 3086
    [21]Cristiani I,Tediosi R,Tartara L,Degiorgio V 2004 Opt.Express 12 124
    [22]Zhang Z,Chen L,Bao X 2010 Opt.Express 18 8261
    [23]Hult J 2007 IEEE J.Lightw.Technol.25 3770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700