用户名: 密码: 验证码:
不同海拔核桃叶中非结构性碳水化合物相关指标的变化及相关分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variations of related indexes of non-structural carbohydrate in leaf of Juglans regia at different altitudes and related analyses
  • 作者:张有福 ; 廉小芳 ; 陈春艳 ; 侯小改
  • 英文作者:ZHANG Youfu;LIAN Xiaofang;CHEN Chunyan;HOU Xiaogai;Agronomy College,He'nan University of Science and Technology;
  • 关键词:核桃 ; 非结构性碳水化合物 ; 海拔 ; 气候因子 ; Pearson相关性分析 ; 逐步回归分析
  • 英文关键词:Juglans regia Linn.;;non-structural carbohydrate;;altitude;;climatic factor;;Pearson correlation analysis;;stepwise regression analysis
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:河南科技大学农学院;
  • 出版日期:2019-05-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:国家自然科学基金资助项目(C030301;31870380)
  • 语种:中文;
  • 页:ZWZY201902003
  • 页数:7
  • CN:02
  • ISSN:32-1339/S
  • 分类号:20-26
摘要
为了探明核桃(Juglans regia Linn.)非结构性碳水化合物积累和组成与海拔及气候因子的关系,以青藏高原东南部12个不同海拔(2 500~3 868 m)样点的核桃为研究对象,对其叶中非结构性碳水化合物、可溶性总糖、蔗糖、果糖和淀粉的含量以及可溶性总糖含量与淀粉含量的比值变化进行了分析,并分别对各指标间及其与气候因子的关系进行了Pearson相关性分析和逐步回归分析。结果表明:核桃叶中非结构性碳水化合物、可溶性总糖、蔗糖、果糖和淀粉的含量均随海拔升高呈上升趋势,且均与海拔呈极显著(P<0.01)正相关;而叶中可溶性总糖含量与淀粉含量的比值随海拔升高呈抛物线型变化,但其相关性不显著。核桃叶中非结构性碳水化合物含量、可溶性总糖含量、蔗糖含量、果糖含量和淀粉含量间存在显著(P<0.05)或极显著正相关,并且,其与年平均气温、最热月平均气温月平均气温范围和年平均降水量的相关性显著;而叶中可溶性总糖含量与淀粉含量的比值与上述指标和气候因子的相关性均不显著。研究结果显示:核桃叶中非结构性碳水化合物的积累随海拔升高而增大,且受到温度和降水因子的共同影响,并以温度因子影响为主。
        To figure out the relationship of accumulation and composition of non-structural carbohydrate in Juglans regia Linn. with altitude and climatic factors, taking J. regia from 12 plots at different altitudes(2 500-3 868 m) in southeastern Qinghai-Tibet Plateau as research object, and variations of contents of non-structural carbohydrate, total soluble sugar, sucrose, fructose and starch in leaf and ratio of total soluble sugar content to starch content were analyzed. In addition, relationships among indexes and their relationships with climatic factors were conducted by Pearson correlation analysis and stepwise regression analysis. The results show that contents of non-structural carbohydrate, total soluble sugar, sucrose, fructose and starch in leaf of J. regia all show a tendency to increase with increasing of altitude, and all have extremely significant(P<0.01) positive correlation with altitude; while ratio of total soluble sugar content to starch content in leaf shows a parabolic type variation with increasing of altitude, but their correlation is not significant. There are significant(P<0.05) or extremely significant positive correlations among contents of non-structural carbohydrate, total soluble sugar, sucrose, fructose and starch in leaf of J. regia, and their correlations with annual mean temperature, mean temperature of the hottest month, range of monthly mean temperature and annual mean precipitation are significant; while correlations of ratio of total soluble sugar content to starch content in leaf with above indexes and climatic factors are not significant. It is suggested that accumulation of non-structural carbohydrate in leaf of J. regia increases with increasing of altitude, which is affected by temperature and precipitation factors, and the effect of temperature factor is primary.
引文
[1] MCGARVEY J C,THOMPSON J R,EPSTEIN H E,et al.Carbon storage in old-growth forests of the Mid-Atlantic:toward better understanding the eastern forest carbon sink[J].Ecology,2015,96(2):311-317.
    [2] 郑云普,王贺新,娄鑫,等.木本植物非结构性碳水化合物变化及其影响因子研究进展[J].应用生态学报,2014,25(4):1188-1196.
    [3] YANG B,PENG C,HARRISON S P,et al.Allocation methanisms of non-structural carbohydrates of Robinia pseudoacacia L.seedlings in response to drought and waterlogging[J].Forests,2018,9(12):754.
    [4] MYERS J A,KITAJIMA K.Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J].Journal of Ecology,2007,95(2):383-395.
    [5] BARBAROUX C,BRéDA N,DUFRêNE E.Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica)[J].New Phytologist,2003,157(3):605-615.
    [6] CHANTUMA P,LACOINTE A,KASEMSAP P,et al.Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J].Tree Physiology,2009,29(8):1021-1031.
    [7] 潘庆民,韩兴国,白永飞,等.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报,2002,19(1):30-38.
    [8] ERICSSON T,RYTTER L,VAPAAVUORI E.Physiology of carbon allocation in trees[J].Biomass and Bioenergy,1996,11(2/3):115-127.
    [9] LIANG E,DAWADI B,PEDERSON N,et al.Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature?[J].Ecology,2014,95(9):2453-2465.
    [10] HOCH G,K?RNER C.Global patterns of mobile carbon stores in trees at the high-elevation tree line[J].Global Ecology and Biogeography,2012,21(7/8):861-871.
    [11] PIPER F I,CAVIERES L A,REYES-DíAZ M,et al.Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D.Don (Rosaceae) at the treeline in central Chile[J].Plant Ecology,2006,185(1):29-39.
    [12] SMITH A M,STITT M.Coordination of carbon supply and plant growth[J].Plant,Cell and Environment,2007,30(9):1126-1149.
    [13] SHI P,K?RNER C,HOCH G.A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas[J].Functional Ecology,2008,22(2):213-220.
    [14] SHI P,K?RNER C,HOCH G.End of season carbon supply status of woody species near the treeline in western China[J].Basic and Applied Ecology,2006,7(4):370-377.
    [15] 张宏祥,张明理,桂东伟,等.新疆核桃4个栽培品种及野生种的遗传多样性分析[J].植物资源与环境学报,2017,26(2):10-16.
    [16] 吴燕民,刘英,董凤祥,等.应用RAPD对我国栽培核桃不同地理生态型的研究[J].北京林业大学学报,2000,22(5):23-27.
    [17] 马和平,朱雪林,刘务林,等.西藏核桃种质资源研究[J].果树学报,2011,28(1):151-155.
    [18] 周永斌,吴栋栋,于大炮,等.长白山不同海拔岳桦非结构碳水化合物含量的变化[J].植物生态学报,2009,33(1):118-124.
    [19] O’BRIEN M J,LEUZINGER S,PHILIPSON C D,et al.Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels[J].Nature Climate Change,2014,4(8):710-714.
    [20] FAJARDO A,PIPER F I,CAVIERES L A.Distinguishing local from global climate influences in the variation of carbon status with altitude in a tree line species[J].Global Ecology and Biogeography,2011,20(2):307-318.
    [21] MONSON R K,ROSENSTIEL T N,FORBIS T A,et al.Nitrogen and carbon storage in alpine plants[J].Integrative and Comparative Biology,2006,46(1):35-48.
    [22] RICHARDSON A D.Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States[J].Plant and Soil,2004,260(1):291-299.
    [23] CAVIERES L A,RADA F,AZóCAR A,et al.Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes[J].Acta Oecologica,2000,21(3):203-211.
    [24] 张贇,尹定财,张卫国,等.普达措国家公园 2个针叶树种径向生长对温度和降水的响应[J].生态学报,2018,38(15):5383-5392.
    [25] 施征,白登忠,雷静品,等.祁连圆柏光合色素与非结构性碳水化合物含量对海拔变化的响应[J].西北植物学报,2012,32(11):2286-2292.
    [26] K?RNER C.The nutritional status of plants from high altitudes:a worldwide comparison[J].Oecologia,1989,81(3):379-391.
    [27] WILEY E,HELLIKER B.A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth[J].New Phytologist,2012,195(2):285-289.
    [28] GENET H,BRéDA N,DUFRêNE E.Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach[J].Tree Physiology,2010,30(2):177-192.
    [29] K?RNER C.A re-assessment of high elevation treeline positions and their explanations[J].Oecologia,1998,115(4):445-459.
    [30] FAJARDO A,PIPER F I,PFUND L,et al.Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control[J].New Phytologist,2012,195(4):794-802.
    [31] 王陆军,赵天田,马庆华,等.中国特有种川榛的地理分布格局与气候环境因子的关系分析[J].植物资源与环境学报,2017,26(1):77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700