用户名: 密码: 验证码:
电弧增材制造航空钛合金构件组织及力学性能研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Microstructure and Mechanical Properties of Aerospace Titanium Alloy Members by Wire Arc Additive Manufacturing Technology
  • 作者:刘小军 ; 陈伟 ; 黄志江 ; 陈玉华
  • 英文作者:LIU Xiao-jun;CHEN Wei;HUANG Zhi-jiang;CHEN Yu-hua;China AVIC Service and Support (Tianjin) Co.,Ltd.;Department of Welding Engineering,Nanchang Hangkong University;
  • 关键词:钛合金 ; 电弧增材制造 ; 组织及调控 ; 力学性能
  • 英文关键词:titanium alloys;;wire arc additive manufacturing;;microstructure and control;;mechanical properties
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:中航航空服务保障(天津)有限公司;南昌航空大学焊接工程系;
  • 出版日期:2019-05-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.60
  • 基金:国防基础科研计划(JCKY2018401C003);; 国家自然科学基金(51865035);; 江西省优势科技创新团队建设计划(20171BCB24007,20181BCB19002)
  • 语种:中文;
  • 页:JMCX201903007
  • 页数:10
  • CN:03
  • ISSN:50-1199/TB
  • 分类号:72-81
摘要
航空航天领域通常将钛合金作为承力结构件使用,对其性能和可靠性都有很高的要求,大型结构件的整体化制造是实现这些需求的有效途径。电弧增材制造技术因效率高、成本低、致密度高,在制备大型结构件方面具有一定优势。综述了国内外电弧增材制造钛合金组织的研究现状,介绍了改变形核条件以及引入轧制、超声等外场辅助技术调控后所得的电弧增材制造钛合金组织。对电弧增材制造钛合金的拉伸性能和疲劳性能进行了综述,总结了拉伸性能和疲劳性能的特点及断裂的原因。最后,对航空航天用钛合金电弧增材制造的组织及力学性能的关系进行了分析,并且对两者的调控前景进行了展望。
        Titanium alloys are usually used as load-bearing structural parts in aerospace industry, which have high requirements for performance and reliability. Integral manufacturing of large structural parts is an effective way to meet these requirements. Wire arc additive manufacturing technology has certain advantages in produced large structural parts because of its high efficiency, low cost and high density. In this paper, researches on titanium alloy microstructure in wire arc additive manufacturing at home and abroad were reviewed and the nucleation conditions and external field assist technologies such as rolling and ultrasonic were introduced. The tensile properties and fatigue properties of titanium alloys were investigated. The characteristics of tensile properties and fatigue properties and the causes of fractures were summarized. Finally, the relationship between the microstructure and mechanical properties of titanium alloy arc additive manufacturing for aerospace were analyzed, and the prospects for both control were prospected.
引文
[1]陈玉华,董春林,倪泉,等.钛合金/铝合金搅拌摩擦焊接头的显微组织[J].中国有色金属学报,2010,20(1):210-214.CHEN Yu-hua,DONG Chun-lin,NI Quan,et al.Microstructure of Friction Stir Welding Joint Between Titanium and Aluminum Dissimilar Alloys[J].The Chinese Journal of Nonferrous Metals,2010,20(1):210-214.
    [2]WILLIAMS S W,MARTINA F,ADDISON A C,et al.Wire+Arc Additive Manufacturing[J].Materials Science and Technology,2016(7):641-647.
    [3]BAUFELD B,BIEST O V D.Microstructure of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition[J].Science and Technology of Advanced Materials,2009,100(11):1536-1542.
    [4]BAUFELD B,BIEST O V D,GAULT R.Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition:Microstructure and Mechanical Properties[J].Materials and Design,2010,31:106-111.
    [5]WANG F D,WILLIAMS S,PAUL C,et al.Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V[J].Metallurgical and Materials Transactions A,2013,44(2):968-977.
    [6]WANG F D,WILLIAMS S,RUSH M.Morphology Investigation on Direct Current Pulsed Gas Tungsten Arc Welded Additive Layer Manufactured Ti6Al4VAlloy[J].International Journal of Advanced Manufacturing Technology,2011,57(5):597-603.
    [7]刘宁.TC4钛合金TIG填丝堆焊成型技术研究[D].哈尔滨:哈尔滨工业大学,2013.LIU Ning.Research on Ti-6Al-4VShaped Metal Deposition by TIG Welding with Wire[D].Harbin:Harbin Institute of Technology,2013.
    [8]WANG J,LINX,WANG J D,et al.Grain Morphology Evolution and Texture Characterization of Wire and Arc Additive Manufactured Ti-6Al-4V[J].Journal of Alloys and Compounds,2018,768:97-113.
    [9]HO L,ZHAO H,FELLOWES J,et al.On the Origin of Microstructural Banding in Ti-6Al-4V Wire-Arc Based High Deposition Rate Additive Manufacturing[J].Acta Materialia,2019,166:306-323.
    [10]MARTINA F,MEHNEN J,WILLIAMS S W,et al.Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti-6Al-4V[J].Journal of Materials Processing Technology,2012,212(6):1377-1386.
    [11]LIN J J,LYU Y H,LIU Y X,et al.Microstructural Evolution and Mechanical Property of Ti-6Al-4V Wall Deposited by Continuous Plasma Arc Additive Manufacturing without Post Heat Treatment[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,69:19-29.
    [12]LIN J J,GUO D J,LYU Y H,et al.Heterogeneous Microstructure Evolution in Ti-6Al-4V Alloy Thin-Wall Components Deposited by Plasma Arc Additive Manufacturing[J].Materials and Design,2018,157:200-210.
    [13]李雷,于治水,张培磊,等.TC4钛合金电弧增材制造叠层组织特征[J].焊接学报,2018,39(12):37-43.LI Lei,YU Zhi-shui,ZHANG Pei-lei,et al.Microstructural Characteristics of Wire and Arc Additive Layer Manufacturing of TC4 Components[J].Transactions of the China Welding Institution,2018,39(12):37-43.
    [14]马振书,陈广森,吴倩茹,等.脉冲频率和热输入对电弧增材制造TC4钛合金形貌和组织的影响[J].稀有金属材料与工程,2018,47(7):198-204.MA Zhen-shu,CHEN Guang-sen,WU Qian-ru,et al.Influence of Pulse Frequency and Heat Input on Macrostructure and Microstructure of TC4 Titanium Alloy by Arc Additive Manufacturing[J].Rare Metal Materials and Engineering,2018,47(7):198-204.
    [15]BERMINGHAM M J,MCDONALD S D,DARGUSCHM S,et al.Grain-Refinement Mechanisms in Titanium Alloys[J].Journal of Materials Research,2008,23(1):97-104.
    [16]BERMINGHAM M J,MCDONALD S D,STJOHN D H,et al.Beryllium as A Grain Refiner in Titanium Alloys[J].Journal of Alloys and Compounds,2009,481(1):20-23.
    [17]BERMINGHAM M J,KENT D,ZHAN H,et al.Controlling the Microstructure and Properties of Wire Arc Additive Manufactured Ti-6Al-4Vwith Trace Boron Additions[J].Acta Materialia,2015,91:289-303.
    [18]MEREDDY S,BERMINGHAM M J,STJOHN D H,et al.Grain Refinement of Wire Arc Additively Manufactured Titanium by the Addition of Silicon[J].Journal of Alloys and Compounds,2017,695:2097-2103.
    [19]MEREDDY S,BERMINGHAM M J,KENT D,et al.Trace Carbon Addition to Refine Microstructure and Enhance Properties of Additive-Manufactured Ti-6Al-4V[J].JOM,2018,9(70):1670-1676.
    [20]MCANDREW A R,ROSALES M A,COLEGROVE PA,et al.Interpass Rolling of Ti-6Al-4V Wire+Arc Additively Manufactured Features for Microstructural Refinement[J].Additive Manufacturing,2018,21:340-349.
    [21]COLEGROVE P A,DONOGHUE J,MARTINA F,et al.Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components[J].Scripta Materialia,2016,18:128-133.
    [22]DONOGHUE J,ANTONYSAMY A A,MARTINA F,et al.The Effectiveness of Combining Rolling Deformation with Wire-Arc Additive Manufacture onβ-grain Refinement and Texture Modification in Ti-6Al-4V[J].Materials Characterization,2016,114:103-114.
    [23]何智.超声冲击电弧增材制造钛合金零件的组织性能研究[D].武汉:华中科技大学,2016.HE Zhi.Effect of Ultrasonic Impact on the Properties of Arc Additive Manufacturing of Titanium alloy[D].Wuhan:Huazhong University of Science and Technology,2016.
    [24]BERMINGHAM M J,NICASTRO L,KENT D,et al.Optimising the Mechanical Properties of Ti-6Al-4VComponents Produced by Wire+Arc Additive Manufacturing with Post-process Heat Treatments[J].Journal of Alloys and Compounds,2018,753:247-255.
    [25]CARROLL B E,PALMER T A,BEESE A M.Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing[J].Acta Materialia,2015,87:309-320.
    [26]TAN X P,KOK Y H,TAN Y H,et al.Graded Microstructure and Mechanical Properties of Additive Manufactured Ti-6Al-4V via Electron Beam Melting[J].Acta Materialia,2015,97:1-16.
    [27]GALARRAGA H,LADOS D A,DEHOFF R R,et al.Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting(EBM)[J].Additive Manufacturing,2016,10:47-57.
    [28]HRABE N,QUINN T.Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy(Ti-6Al-4V)Fabricated Using Electron Beam Melting(EBM),Part 2:Energy Input,Orientation,And Location[J].Materials Science and Engineering A,2013,573(3):271-277.
    [29]EDWARDS P,OCONNER A,RAMULU M.Electron Beam Additive Manufacturing of Titanium Components:Properties and Performance[J].Journal of Manufacturing Science and Engineering,2013,135(6):461-470.
    [30]VILARO T,COLIN C,BARTOUT J D.As-fabricated and Heat-treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting[J].Metallurgical and Materials Transactions A,2011,42(10):3190-3199.
    [31]BISWALR,ZHANG X,SYED A K,et al.Criticality of Porosity Defects on the Fatigue Performance of Wire?+?Arc Additive Manufactured Titanium Alloy[J].International Journal of Fatigue,2019,122:208-217.
    [32]XIE Y,GAO M,WANG F D,et al.Anisotropy of Fatigue Crack Growth in Wire Arc Additive Manufactured Ti-6Al-4V[J].Materials Science and Engineering A,2018,709:265-269.
    [33]ZHANG J K,WANG X Y,PADDEA S,et al.Fatigue Crack Propagation Behaviourin Wire+Arc Additive Manufactured Ti-6Al-4V:Effects of Microstructure and Residual Stress[J].Materials and Design,2016,90:551-561.
    [34]ZHANG J K,ZHANG X,WANG X Y,et al.Crack Path Selection at the Interface of Wrought and Wire+Arc Additive Manufactured Ti-6Al-4V[J].Materials and Design,2016,104:365-375.
    [35]ZHANG Q,CHEN J,LIN X,et al.Grain Morphology Control and Texture Characterization of Laser Solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb Titanium Alloy[J].Journal of Materials Processing Technology,2016,238:202-211.
    [36]ZHANG Q,CHEN J,WANG L,et al.Solidification Microstructure of Laser Additive Manufactured Ti-6Al-2Zr-2Sn-3Mo-1.5Cr-2Nb Titanium Alloy[J].Journal of Materials Science and Technology,2016,32(4):381-386.
    [37]BONTHA S,KLINGBEIL N W,KOBRYN P A,et al.Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures[J].Journal of Materials Processing Technology,2006,178(3):135-142.
    [38]GAUMANN M,BEZENCON C,CANALIS P,et al.Single-crystal Laser Deposition of Superalloys:Processing Microstructure Maps[J].Acta Mater,2001,49(6):1051-1062.
    [39]COLLINS P C,BRICE D A,SAMIMI P,et al.Microstructural Control of Additively Manufactured Metallic Materials[J].Annual Review of Materials Research,2016,46(1):63-91.
    [40]BURGERS W G.On the Process of Transition of the Cubic-body-centered Modification into the Hexagonal-close-packed Modification of Zirconium[J].Physica,1934,1(7):561-586.
    [41]DONGP.Residual Stresses and Distortions in Welded Structures:A Perspective for Engineering Applications[J].Science and Technology of Welding and Joining,2005,10(4):389-398.
    [42]CHEN M,ZHANG D,WU C.Current Waveform Effects on CMT Welding of Mild Steel[J].Journal of Materials Processing Technology,2017,243:395-404.
    [43]CONG B,OUYANG R,QI B,et al.Influence of Cold Metal Transfer Process and Its Heat Input on Weld Bead Geometry and Porosity of Aluminum-Copper Alloy Welds[J].Rare Metal Materials and Engineering,2016,45(3):606-611.
    [44]PAL K,PAL S K.Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding:A Review[J].Journal of Materials Engineering and Performance,2011,20(6):918-931.
    [45]WANG L L,WEI H L,XUE J X,et al.Special Features of Double Pulsed Gas Metal A rc Welding[J].Journal of Materials Processing Technology,2018,251:369-375.
    [46]WANG Y,QI B,CONG B,et al.Arc Characteristics in Double-Pulsed VP-GTAW for Aluminum Alloy[J].Journal of Materials Processing Technology,2017,249:89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700