用户名: 密码: 验证码:
昆仑山Ms8.1地震前后大气温度垂直分层变化特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution characteristics of multiple stratification air temperature in vertical of Kunlun Mountains Ms8.1 earthquake
  • 作者:马未宇 ; 康春丽 ; 刘军 ; 岳冲 ; 卢显
  • 英文作者:MA Weiyu;KANG Chunli;LIU Jun;YUE Chong;LU Xian;China Earthquake Networks Center;Department of Disaster Prevention Engineering,Institute of Disaster Prevention Science and Technology;
  • 关键词:地震遥感 ; 温度异常 ; 垂直分布 ; 天体引潮力 ; 构造断裂
  • 英文关键词:earthquake remote sensing;;temperature anomaly;;vertical distribution;;celestial tide-generating stress;;tectonic fault
  • 中文刊名:YGXB
  • 英文刊名:Journal of Remote Sensing
  • 机构:中国地震台网中心;防灾科技学院防灾工程系;
  • 出版日期:2018-12-25
  • 出版单位:遥感学报
  • 年:2018
  • 期:v.22
  • 基金:高分辨率对地观测系统重大专项应用示范一期(编号:31-Y30B09-9001-13/15)~~
  • 语种:中文;
  • 页:YGXB2018S1017
  • 页数:7
  • CN:S1
  • ISSN:11-3841/TP
  • 分类号:178-184
摘要
研究引潮力的相位变化周期与发震的关系,进而确定地震大气温度增强异常识别的背景指示时间,采用大气分层技术,处理美国国家环境中心的NCEP大气温度数据,分析了昆仑山MS8.1地震前后不同高度层的大气温度垂直分布动态演化,结果显示:地震发生时引潮力值所处最大振幅相位附近,反映引潮力对本次地震的发生具有触、诱发的作用;孕震区地表及其上附多层大气热变化经历震前起始增温,震后消亡的连续时间演变过程,增温区集中在地震活动断裂带及其附近区域,呈现出与构造紧密关联的非均匀加热,与岩石受力,由形变—破裂过程中向外热辐射变化过程相吻合,表明大气增温与昆仑山地震活动相关;热增强表现出自下而上的从地表开始增温,并随大气运动抬升扩散,在一定高度的高空逐渐消亡的过程,符合地面对大气加热导致大气升温、抬升、扩散、消亡的大气热动力学特性,表明下垫面构造运动是本次温度异常变化的主控原因;大气增温过程与引潮力(低值—高值)的变化过程具有一定的同步性,显示引潮力为地震大气温度异常识别过程中,背景温度选择提供具有力学含义、可预先计算获得的时间指示,而通过引潮力周期获得的大气温度变化反映了临震构造应力的变化,将引潮力变化与大气温度垂直分层分析结合,将有助于区分地震热异常与非震热异常。
        The paper analyzed the relationship between an earthquake and a celestial tide-generating force. We selected the background that indicates the time for the research of the abnormal enhancement in identifying the atmospheric temperature rise caused by an earthquake based on the phase change cycle of tidal force. Then, with the use of atmospheric stratification, which is integrated with atmospheric temperature data from the National Center for Environmental Prediction, the air temperature evolution of several different levels in the vertical direction before and after the MS8.1 Kunlun Mountains earthquake was analyzed. Results show that the earthquake occurred when the tidal force value was near the maximum amplitude phase. Thus, the tidal force could trigger an earthquake near land surfaces and upper multi-layers. The warming areas are mainly concentrated near active faults, thereby exhibiting non-uniform heating procession. The temperature increased to a continuous evolution procession of warming before the earthquake and recession after the earthquake. It obeyed the rule of thermal rise procession of rock broken under stress loading. Thus, the increase in temperature was related to the activities of the regional fault. Meantime, the air temperature performed a warm procession, that is, the surface air is warmed by land, uplifted by heat flux, and cooled and dissipated in the sky. It is consistent with the dynamic diffusion principle of atmospheric air thermal warming by land in the vertical direction. The tectonic activity is the main cause of the abnormal change in temperature. Finally, the atmospheric warming process stepped with the tidal force(from low phase to high phase) change process. Therefore, the tide force not only delivered a mechanical basis and calculated the time to select the background in advance in research on air temperature warming during an earthquake but also showed that the atmosphere temperature change, according to the tidal force change cycle, could reflect the change in tectonic stress prior to an impending earthquake. Combining the analysis of the tidal force change and the analysis of atmospheric vertical temperature stratification distinguishes the increase in air temperature anomalies caused by the earthquake from that which is not caused by an earthquake.
引文
Gorny V I,Salman A G,Tronin A A and Shilin B V.1988.Terrestrial Outgoing infrared radiation as an indicator of seismic activity.Proceedings of the Academy of Sciences of the USSR,301(1):67-69
    Heaton T H.1975.Tidal triggering of earthquakes.Geophysical Journal of International,43(2):307-326[DOI:10.1111/j.1365-246X.1975.tb00637.x]
    Kalnay E,Kanamitsu M,Kistler R,Collins W,Deaven D,Gandin L,Iredell M,Saha S,White G,Woollen,Zhu Y,Leetmaa A,Reynolds R,Chelliah M,Ebisuzaki W,Higgins W,Janowiak J,Mo KC,Ropelewski C,Wang J,Jenne R and Joseph D.1996.The NCEP/NCAR 40-year reanalysis project.Bulletin of the American Meteorological Society,77(3):437-471[DOI:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2]
    Lisi M,Filizzola C,Genzano N,Grimaldi C S L,Lacava T,Marchese F,Mazzeo G,Pergola N and Tramutoli V.2010.A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations.Natural Hazards and Earth System Science,10(2):395-406[DOI:10.5194/nhess-10-395-2010]
    Liu J,Liu X Y,Bo H G,Zong C and Ma W Y.2014.Spatio-temporal dynamic variation of thermal anomalies before and after the 2005Jiujiang MS5.7 earthquake based on the modulation of additive tectonics stress induced by tide-generating force.Acta Seismologica Sinica,36(3):514-521(刘军,刘小阳,薄海光,宗超,马未宇.2014.基于引潮力附加构造应力调制的九江地震热异常时空动态过程研究.地震学报,36(3):514-521)[DOI:10.3969/j.issn.0253-3782.2014.03.016]
    Ma W Y,Wang H,Li F S and Ma W M.2012.Relation between the celestial tide-generating stress and the temperature variations of the Abruzzo M=6.3 Earthquake in April 2009.Natural Hazards and Earth System Sciences,12(3):819-827[DOI:10.5194/nhess-12-819-2012]
    Ma W Y,Kang C L,Xie T,Ren J and Zhong X H.2014.The changes of the tidal force and the outgoing long-wave radiation of Lushan(China)MS7.0 earthquake.Progress in Geophysics,29(5):2047-2050(马未宇,康春丽,解滔,任静,仲小红.2014.芦山MS7.0地震前天体引潮力和OLR异常.地球物理学进展,29(5):2047-2050)[DOI:10.6038/pg20140508]
    Mcnutt S R and Beavan R J.1981.Volcanic earthquakes at Pavlof Volcano correlated with the solid earth tide.Nature,294(5842):615-618[DOI:10.1038/294615a0]
    Mogi K.1984.Fundamental studies on earthquake prediction//A Collection of Papers of International Symposium on Continental Seismicity and Earthquake Prediction(ISCSEP).Beijing:Seismological Press:619-652.
    Ouzounov D and Freund F.2004.Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data.Advances in Space Research,33(3):268-273[DOI:10.1016/S0273-1177(03)00486-1]
    Qin K,Wu L X,Ma W Y and Lin Y W.2011.Per-pixel analyzing method of earthquake thermal infrared remote sensing based on NCEP data.Remote Sensing Information(4):18-22,45(秦凯,吴立新,马未宇,林亚卫.2011.基于NCEP数据的地震热红外遥感逐像元分析方法.遥感信息(4):18-22,45)[DOI:10.3969/j.issn.1000-3177.2011.04.004]
    Qin K,Wu L X,De Santis A,Meng J,Ma W Y and Cianchini G.2012.Quasi-synchronous multi-parameter anomalies associated with the2010-2011 New Zealand earthquake sequence.Natural Hazards and Earth System Sciences,12(4):1059-1072[DOI:10.5194/nhess-12-1059-2012]
    Qin K,Wu L X,Zheng S and Liu S J.2013.A deviation-time-spacethermal(DTS-T)method for global earth observation system of systems(GEOSS)-based earthquake anomaly recognition:criterions and quantify indices.Remote Sensing,5(10):5143-5151[DOI:10.3390/rs5105143]
    Qu C Y,Ma J and Shan X J.2006.Counterevidence for an earthquake precursor of satellite thermal infrared anomalies.Chinese Journal of Geophysics,49(2):490-495(屈春燕,马瑾,单新建.2006.一次卫星热红外地震前兆现象的证伪.地球物理学报,49(2):490-495)[DOI:10.3321/j.issn:0001-5733.2006.02.022]
    Ren J W and Wang M.2005.GPS Measured crustal deformation of the MS8.1 Kunlun earthquake on November 14th 2001 in QinghaiXizang plateau.Quaternary Sciences,25(1):34-44(任金卫,王敏.2005.GPS观测的2001年昆仑山口西MS8.1级地震地壳变形.第四纪研究,25(1):34-44)[DOI:10.3321/j.issn:1001-7410.2005.01.006]
    Saraf A K,Rawat V,Banerjee P,Choudhury S,Panda S K,Dasgupta Sand Das J D.2008.Satellite detection of earthquake thermal infrared precursors in Iran.Natural Hazards,47(1):119-135[DOI:10.1007/s11069-007-9201-7]
    Shan X J,Li J H and Ma C.2005.Study on the feature of surface rupture zone of the West of Kunlunshan Pass earthquake(MS8.1)with high spatial resolution satellite images.Chinese Journal of Geophysics,48(2):321-326(单新建,李建华,马超.2005.昆仑山口西MS8.1级地震地表破裂带高分辨率卫星影像特征研究.地球物理学报,48(2):321-326)[DOI:10.3321/j.issn:0001-5733.2005.02.013]
    Tramutoli V,Di Bello G,Pergola N and Piscitelli S.2001.Robust satellite techniques for remote sensing of seismically active areas.Annali Di Geofisica,44(2):295-312[DOI:10.4401/ag-3596]
    Tramutoli V.2007.Robust satellite techniques(RST)for natural and environmental hazards monitoring and mitigation:theory and applications//Proceedings of International Workshop on the Analysis of Multi-temporal Remote Sensing Images.Leuven:IEEE:1-6[DOI:10.1109/MULTITEMP.2007.4293057]
    Tronin A A,Hayakawa M and Molchanov O A.2002.Thermal IRsatellite data application for earthquake research in Japan and China.Journal of Geodynamics,33(4/5):519-534[DOI:10.1016/S0264-3707(02)00013-3]
    Wu L X,Liu S J,Wu Y H and Li Y Q.2004.Remote sensing-rock mechanics(I)-Laws of thermal infrared radiation from fracturing of discontinous jointed faults and its meanings for tectonic earthquake omens.Chinese Journal of Rock Mechanics and Engineering,23(1):24-30(吴立新,刘善军,吴育华,李永强.2004.遥感-岩石力学(I):非连续组合断层破裂的热红外辐射规律及其构造地震前兆意义.岩石力学与工程学报,23(1):24-30)[DOI:10.3321/j.issn:1000-6915.2004.01.005]
    Yang Y Z and Guo G M.2010.Studying the thermal anomaly before the Zhangbei earthquake with MTSAT and meteorological data.International Journal of Remote Sensing,31(11):2783-2791[DOI:10.1080/01431160903095478]
    Zhang Y S,Guo X,Zhong M J,Shen W R,Li W and He B.2010.Wenchuan earthquake:brightness temperature changes from satellite infrared information.Chinese Science Bulletin,55(18):1917-1924[DOI:10.1007/s11434-010-3016-8]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700