用户名: 密码: 验证码:
煤的多尺度孔隙结构特征及其对渗透率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of multi-scale pore structure of coal and its influence on permeability
  • 作者:潘结南 ; 张召召 ; 李猛 ; 毋亚文 ; 王凯
  • 英文作者:Pan Jienan;Zhang Zhaozhao;Li Meng;Wu Yawen;Wang Kai;Institute of Resources & Environment, Henan Polytechnic University;Henan Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region;
  • 关键词: ; 多尺度孔隙结构 ; 扫描电镜 ; 液氮—压汞联合实验 ; 恒速压汞 ; 渗透率 ; 变质程度
  • 英文关键词:Coal;;Multi-scale pore structure;;Scanning electron microscope;;Combined liquid nitrogen adsorption and high-pressure mercury intrusion;;Constant-rate mercury intrusion;;Permeability;;Degree of metamorphism
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:河南理工大学资源环境学院;中原经济区煤层(页岩)气河南省协同创新中心;
  • 出版日期:2019-01-29 16:50
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.303
  • 基金:国家自然科学基金项目“构造煤微裂隙结构演化特征及对煤储层渗透性控制”(编号:41772162);; 河南省高校科技创新团队支持计划项目“煤层气储层物性及其地质控制”(编号:17IRTSTHN025)
  • 语种:中文;
  • 页:TRQG201901010
  • 页数:10
  • CN:01
  • ISSN:51-1179/TE
  • 分类号:70-79
摘要
煤中孔隙大小分布不均且分布范围较广,因而利用单一的方法难以对煤的多尺度孔隙结构进行有效地表征。为此,综合运用扫描电镜、低温液氮吸附、高压压汞、恒速压汞等实验方法,对煤的多尺度孔隙结构特征进行综合分析,并揭示变质作用对煤孔体积、孔比表面积的影响,以及煤岩渗透率与孔隙结构特征参数的关系。研究结果表明:(1)随煤变质程度增强,煤中纳米孔体积及孔比表面积均呈现先减小后增大的趋势,并且在R_(o,max)为1.8%左右时达到最小值;(2)煤样孔隙半径、喉道半径整体均呈现正态分布,并且随着煤变质程度的增加,最大分布频率对应的孔隙半径增大;(3)低煤阶烟煤煤样的喉道半径分布范围最宽,最大连通喉道半径及喉道半径平均值均最大;(4)无烟煤煤样的喉道半径分布范围最窄且最大连通喉道半径最小;(5)低、中煤阶烟煤煤样的孔喉比分布存在着单一主峰,并且主峰对应孔喉比相对较小;(6)煤岩渗透率与孔隙度、喉道半径平均值表现出了较好的正相关关系,其与孔喉比平均值呈负相关关系,而与孔隙半径平均值的关系则不明显。
        Due to the uneven distribution of pore size in coal and its wide distribution range, it is difficult to effectively characterize the multi-scale pore structure of coal by a single method. In this paper, the multi-scale pore structure characteristics of coal were analyzed comprehensively by using scanning electron microscope, low-temperature liquid nitrogen adsorption, high-pressure mercury intrusion and constant-rate mercury intrusion. In addition, the effects of metamorphism on the volume and specific surface area of pores in coal were revealed, and the relationships between coal rock permeability and pore structure characteristic parameters were described. And the following research results were obtained. First, with the increase of coal metamorphism, the volume and specific surface area of nanopores in coal decrease first and then increase, and they reach the minimum value when Ro,max is about 1.8%. Second, the pore and throat radii of coal samples are overall in the form of normal distribution. And with the increase of coal metamorphism, the pore radius corresponding to the maximum distribution frequency increases. Third, the samples of low-rank bituminous coal are the highest in throat radius distribution range, connected throat radius and average throat radius. Fourth, the samples of anthracite coal are the lowest in throat radius distribution range and connected throat radius. Fifth, there is a single main peak in the distribution of pore throat ratios of low-and medium-rank bituminous coal samples, and the pore throat ratios corresponding to the main peak is relatively low. Sixth, the permeability of coal is in a positive correlation with porosity and an average throat radius, and in a negative correlation with an average pore throat ratio, but in no obvious correlation with an average pore radius.
引文
[1]Clarkson CR&Bustin RM.The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study.1.Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
    [2]Pillalamarry M,Harpalani S&Liu SM.Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs[J].International Journal of Coal Geology,2011,86(4):342-348.
    [3]王生维,段连秀,陈钟惠,张明.煤层气勘探开发中的煤储层评价[J].天然气工业,2004,24(5):82-84.Wang Shengwei,Duan Lianxiu,Chen Zhonghui&Zhang Ming.Reservoir evaluation for exploration and development of coal-bed gas[J].Natural Gas Industry,2004,24(5):82-84.
    [4]朱苏阳,杜志敏,李传亮,彭小龙,王超文.煤层气吸附-解吸规律研究进展[J].西南石油大学学报(自然科学版),2017,39(4):104-112.Zhu Suyang,Du Zhimin,Li Chuanliang,Peng Xiaolong&Wang Chaowen.The adsorption and desorption of coal bed methane:Areview[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(4):104-112.
    [5]李勇,孟尚志,吴鹏,牛鑫磊.煤层气成藏机理及气藏类型划分--以鄂尔多斯盆地东缘为例[J].天然气工业,2017,37(8):22-30.Li Yong,Meng Shangzhi,Wu Peng&Niu Xinlei.Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J].Natural Gas Industry,2017,37(8):22-30.
    [6]唐书恒,蔡超,朱宝存,段利江,张佳赞.煤变质程度对煤储层物性的控制作用[J].天然气工业,2008,28(12):30-33.Tang Shuheng,Cai Chao,Zhu Baocun,Duan Lijiang&Zhang Jiazan.Control effect of coal metamorphic degree on physical properties of coal reservoirs[J].Natural Gas Industry,2008,28(12):30-33.
    [7]Yao YB&Liu DM.Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J].Fuel,2012,95(1):152-158.
    [8]戚灵灵,王兆丰,杨宏民,陈向军.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,2012,40(8):36-39.Qi Lingling,Wang Zhaofeng,Yang Hongmin&Chen Xiangjun.Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J].Coal Science and Technology,2012,40(8):36-39.
    [9]Li YH,Lu GQ&Rudolph V.Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J].Particle&Particle Systems Characterization,1999,16(1):25-31.
    [10]Peng C,Zou CC,Yang YQ,Zhang GH&Wang WW.Fractal analysis of high rank coal from Southeast Qinshui Basin by using gas adsorption and mercury porosimetry[J].Journal of Petroleum Science&Engineering,2017,156:235-249.
    [11]降文萍,张群,姜在炳,韩保山.构造煤孔隙结构对煤层气产气特征的影响[J].天然气地球科学,2016,27(1):173-179.Jiang Wenping,Zhang Qun,Jiang Zaibing&Han Baoshan.Effect on CBM drainage characteristics of pore structure of tectonic coal[J].Natural Gas Geoscience,2016,27(1):173-179.
    [12]Pan JN,Zhao YQ,Hou QL&Jin Y.Nanoscale pores in coal related to coal rank and deformation structures[J].Transport in Porous Media,2015,107(2):543-554.
    [13]Nie BS,Liu XF,Yang LL,Meng JQ&Li XC.Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J].Fuel,2015,158:908-917.
    [14]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.Zhang Hui.Genetical type of proes in coal reservoir and its research significance[J].Journal of China Coal Society,2001,26(1):40-44.
    [15]Gan H,Nandi SP&Walker PL Jr.Nature of the porosity in American coals[J].Fuel,1972,51(4):272-277.
    [16]Zhao YX,Liu SM,Elsworth D,Jiang YD&Zhu J.Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy[J].Energy Fuels,2014,28(6):3704-3711.
    [17]Pan JN,Niu QH,Wang K,Shi XH&Li M.The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J].Microporous&Mesoporous Materials,2016,224:245-252.
    [18]Pan JN,Zhu HT,Hou QL,Wang HC&Wang S.Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J].Fuel,2015,139:94-101.
    [19]Shi XH,Pan JN,Hou QL,Jin Y,Wang ZZ,Niu QH,et al.Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory[J].Fuel,2018,212:162-172.
    [20]Mazumder S,Wolf KHAA,Elewaut K&Ephraim R.Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal samples[J].International Journal of Coal Geology,2006,68(3/4):205-222.
    [21]宋党育,何凯凯,吉小峰,李云波,赵豪田.基于CT扫描的煤中孔裂隙精细表征[J].天然气工业,2018,38(3):41-49.Song Dangyu,He Kaikai,Ji Xiaofeng,Li Yunbo&Zhao Haotian.Fine characterization of pores and fractures in coal based on a CTscan[J].Natural Gas Industry,2018,38(3):41-49.
    [22]Zheng SJ,Yao YB,Liu DM,Cai YD&Liu Y.Characterizations of full-scale pore size distribution,porosity and permeability of coals:A novel methodology by nuclear magnetic resonance and fractal analysis theory[J].International Journal of Coal Geology,2018,196:148-158.
    [23]Yuan HH&Swanson BF.Resolving pore-space characteristics by rate-controlled porosimetry[J].SPE Formation Evaluation,1989,4(1):17-24.
    [24]Yuan HH.Advances in APEX technology:Determination of cementation exponent and absolute permeability[J].The Log Analyst,1991,32(5):557-570.
    [25]Yuan HH.Pore-scale heterogeneity from mercury porosimetry data[J].SPE Formation Evaluation,1991,6(2):233-240.
    [26]肖佃师,卢双舫,陆正元,黄文彪,谷美维.联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J].石油勘探与开发,2016,43(6):961-970.Xiao Dianshi,Lu Shuangfang,Lu Zhengyuan,Huang Wenbiao&Gu Meiwei.Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J].Petroleum Exploration and Development,2016,43(6):961-970.
    [27]Zhao HW,Ning ZF,Wang Q,Zhang R,Zhao TY,Niu TF,et al.Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry[J].Fuel,2015,154:233-242.
    [28]中华人民共和国国家发展和改革委员会.岩心分析方法:SY/T 5336-2006[S].北京:石油工业出版社,2006.National Development and Reform Commission.Practices for core analysis:SY/T 5336-2006[S].Beijing:Petroleum Industry Press,2006.
    [29]中华人民共和国国家质量监督检验检疫总局,中华人民共和国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸附法分析介孔和大孔:GB/T 21650.2-2008[S].北京:中国标准出版社,2008.State Administration of Quality Supervision,Inspection and Quarantine of the PRC&Standardization Administration of the PRC.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2:Analysis of mesopores and macropores by gas adsorption:GB/T 21650.2-2008[S].Beijing:Standard Press of China,2008.
    [30]Barrett EP,Joyner LG&Halenda PP.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
    [31]中华人民共和国国家质量监督检验检疫总局,中华人民共和国国家标准化管理委员会.压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分:压汞法:GB/T 21650.1-2008[S].北京:中国标准出版社,2008.State Administration of Quality Supervision,Inspection and Quarantine of the PRC&Standardization Administration of the PRC.Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 1:Mercury porosimetry:GB/T 21650.1-2008[S].Beijing:Standard Press of China,2008.
    [32]Washburn EW.The dynamics of capillary flow[J].The Physical Review,1921,17(3):273-283.
    [33]王新江.恒速法--岩石毛管压力曲线测定标准方法探讨[J].中国石油和化工标准与质量,2013(20):79,83.Wang Xinjiang.Discussion on the standard method for determining capillary pressure curve of rock by constant velocity method[J].China Petroleum and Chemical Standard and Quality,2013(20):79,83.
    [34]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987(4):53-58.Hao Qi.On morphological character and origin of micropores in coal[J].Journal of China Coal Society,1987(4):53-58.
    [35]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学--中国地质大学学报,1995,20(5):557-561.Wang Shengwei,Chen Zhonghui&Zhang Ming.Pore and microfracture of coal matrix block and their effects on the recovery of methane from coal[J].Earth Science-Journal of China University of Geosciences,1995,20(5):557-561.
    [36]琚宜文,姜波,侯泉林,王桂梁,方爱民.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-285.Ju Yiwen,Jiang Bo,Hou Quanlin,Wang Guiliang&Fang Aimin.Structural evolution of nano-scale pores of tectonic coals in Southern North China and its mechanism[J].Acta Geologica Sinica,2005,79(2):269-285.
    [37]赵兴龙,汤达祯,许浩,陶树,陈贞龙.煤变质作用对煤储层孔隙系统发育的影响[J].煤炭学报,2010,35(9):1506-1511.Zhao Xinglong,Tang Dazhen,Xu Hao,Tao Shu&Chen Zhenlong.Effect of coal metamorphic process on pore system of coal reservoirs[J].Journal of China Coal Society,2010,35(9):1506-1511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700