用户名: 密码: 验证码:
高频磁耦合有缆钻杆信道的联合仿真设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Joint simulation design of the channel of high-frequency magnetic coupling wired drill pipe
  • 作者:胡永建 ; 黄衍福 ; 刘岩生
  • 英文作者:Hu Yongjian;Huang Yanfu;Liu Yansheng;CNPC Engineering Technology R&D Co.,Ltd.;
  • 关键词:磁耦合有缆钻杆 ; 智能钻杆 ; 信息钻杆 ; 信道建模 ; 电磁结构仿真 ; 线性仿真 ; 联合仿真
  • 英文关键词:magnetic coupling wired drill pipe;;IntelliPipe;;InforPipe;;channel modeling;;electromagnet structure simulation;;linear simulation;;joint simulation
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:中国石油集团工程技术研究院有限公司;
  • 出版日期:2019-04-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家科技重大专项(2016ZX05020-005-001)资助
  • 语种:中文;
  • 页:SYXB201904009
  • 页数:7
  • CN:04
  • ISSN:11-2128/TE
  • 分类号:97-103
摘要
为了延长高频磁耦合有缆钻杆的无中继传输距离,使用电磁结构仿真与线性仿真的联合仿真技术对信道建模并仿真。高频磁耦合有缆钻杆信道是重复的基本单元的级联,基本单元包含磁耦合线圈副与同轴电缆。对磁耦合线圈副,电路理论建模需要通过测量样品等得到元件参数,有些参数不易测量,有些结构及材料参数不易体现在模型中,而电磁结构仿真能够解决这些问题。对于同轴电缆这类大尺寸模型,电磁结构仿真耗时长,使用线性仿真可以保证仿真精度、缩短仿真时间。联合仿真技术弥补了单一仿真的缺陷,经实验验证,仿真结果与实际测量结果一致。通过联合仿真研究了基本单元级联数量、有缆钻杆尺寸、铁氧体磁芯磁导率及隔离隙等对谐振峰载波频点和衰减的影响,完成了高频磁耦合有缆钻杆信道的阻抗匹配和优化设计,使无中继传输距离达到了300 m以上,有效减少了中继器的使用数量,在降低成本的同时提高了信道可靠性,并完成了现场试验。
        To extend the no-relay transmission distance of high-frequency magnetic coupling wired drill pipe,the joint simulation technology involving both the electromagnet structure simulation and linear simulation are used for channel modeling and simulation.The channel of high-frequency magnetic coupling wired drill pipe is a cascade of duplicate basic units which consists of a magnetically coupled coil pair and coaxial cables.For the magnetically coupled coil pair,the modeling based on circuit theory needs the measurements of sample to obtain element parameters.Some parameters are not easy to measure,and some structural and material parameters are not easily reflected in the model.The electromagnet structure simulation can solve these problems.For large size models such as coaxial cable,the electromagnetic structure simulation takes a long time.The simulation accuracy and less simulation time can be guaranteed by linear simulation.The joint simulation technology makes up for the defects of single simulation,and the simulation results are consistent with the actual measurement results.The influences of the cascade number of basic units,size of the wired drill pipe,permeability of the ferrite core,as well as isolation gap on the frequency point and attenuation of resonant peak carrier are studied by joint simulation.On this basis,the impedance matching and optimal design for the channel of high-frequency magnetic coupling wired drill pipe is completed.The no-relay transmission distance is more than 300 meters to effectively reduce the number of repeaters.The reliability of channel is improved and the onsite test is completed at a low cost.
引文
[1]刘标,姚素平,胡文瑄,等.核磁共振冻融法表征非常规油气储层孔隙的适用性[J].石油学报,2017,38(12):1401-1410.LIU Biao,YAO Suping,HU Wenxuan,et al.Application of nuclear magnetic resonance cryoporometry in unconventional reservoir rocks[J].Acta Petrolei Sinica,2017,38(12):1401-1410.
    [2]张运龙,丁峰,尹成,等.基于地震波形结构属性识别河流相砂体叠置区[J].石油学报,2018,39(7):792-801.ZHANG Yunlong,DING Feng,YIN Cheng,et al.The identification of fluvial sand-body superimposed area based on seismic waveform structure attributes[J].Acta Petrolei Sinica,2018,39(7):792-801.
    [3]杨震,马清明,杨宁宁,等.基于正交天线的随钻方位电磁波电阻率成像响应特征模拟[J].石油学报,2018,39(9):1063-1069.YANG Zhen,MA Qingming,YANG Ningning,et al.Imaging response characteristic simulation of azimuthal electromagnetic resistivity while drilling based on orthogonal antenna[J].Acta Petrolei Sinica,2018,39(9):1063-1069.
    [4]张兆辉,杜社宽,陈华勇,等.基于电成像测井的火山岩裂缝分布定量表征——以准噶尔盆地滴西地区石炭系为例[J].石油学报,2018,39(10):1130-1140.ZHANG Zhaohui,DU Shekuan,CHEN Huayong,et al.Quantitative characterization of volcanic fracture distribution based on electrical imaging logging:a case study of Carboniferous in Dixi area,Junggar Basin[J].Acta Petrolei Sinica,2018,39(10):1130-1140.
    [5]DE ALMEIDA I N JR,ANTUNES P D,GONZALEZ F O C,et al.A review of telemetry data transmission in unconventional petroleum environments focused on information density and reliability[J].Journal of Software Engineering and Applications,2015,8(9):455-462.
    [6]LIVESCU S,BLANCO D A,VACIK L,et al.Novel 2 1/8-in.Real-time downhole data monitoring system for coiled tubing operations[R].SPE174850,2015.
    [7]MWACHAKA S M,WU Aiping,FU Qingqing.A review of mud pulse telemetry signal impairments modeling and suppression methods[J].Journal of Petroleum Exploration and Production Technology,2019,9(1):779-792.
    [8]CARPENTER C.Wired-drillpipe technology in a deep ultradepleted reservoir[J].Journal of Petroleum Technology,2014,66(6):101-103.
    [9]JOHNSON M,BARTHOLOMEW.Physically segmented logical token network:US,7649473[P].2010-01-19.
    [10]NOV Wellbore Technologies.eVolve Optimization Service:INFORM(NOV-DDS-F-1358-001)[EB/OL].(2017)[2018-09-01].http:∥www.nov.com/WorkArea/DownloadAsset.aspx?id=28803.
    [11]NOV Wellbore Technologies.eVolve Optimization Service:ADVISE(NOV-DDS-F-1359-001)[EB/OL].(2015)[2018-09-01].http:∥www.nov.com/WorkArea/DownloadAsset.aspx?id=19273.
    [12]NOV Wellbore Technologies.eVolve Optimization Service:CONTROL(NOV-DDS-F-1360-001)[EB/OL].(2015)[2018-09-01].http:∥www.nov.com/WorkArea/DownloadAsset.aspx?id=19274.
    [13]NOV Wellbore Technologies.eVolve Optimization Service:AUTOMATE(NOV-DDS-F-1396-001)[EB/OL].(2015)[2018-09-01].http:∥www.nov.com/WorkArea/DownloadAsset.aspx?id=19275.
    [14]孙浩玉.智能钻杆磁感应传输技术及其信道特性分析[J].中国石油大学学报:自然科学版,2013,37(6):172-176.SUN Haoyu.Technology of magnetic induction transmission of intelligent drill pipe and its channel characteristics[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(6):172-176.
    [15]刘亚军,孙东奎,刘锋,等.甚低频磁感应波智能钻杆信号传输系统性能分析[J].西安石油大学学报:自然科学版,2017,32(1):119-126.LIU Yajun,SUN Dongkui,LIU Feng,et al.Performance analysis of intelligent measurement system while drilling based on the magneto-inductive wave of very low frequency[J].Journal of Xi’an Shiyou University:Natural Science,2017,32(1):119-126.
    [16]汪海阁,葛云华,石林.深井超深井钻完井技术现状、挑战和“十三五”发展方向[J].天然气工业,2017,37(4):1-8.WANG Haige,GE Yunhua,SHI Lin.Technologies in deep and ultra-deep well drilling:Present status,challenges and future trend in the 13th Five-Year Plan period(2016-2020)[J].Natural Gas Industry,2017,37(4):1-8.
    [17]胡永建,黄衍福,石林.高频磁耦合有缆钻杆信道建模与仿真分析[J].石油学报,2018,39(11):1292-1298.HU Yongjian,HUANG Yanfu,SHI Lin.Channel modeling and simulation of high-frequency magnetic coupling wired drill pipe[J].Acta Petrolei Sinica,2018,39(11):1292-1298.
    [18]胡永建,黄衍福,孙成芹,等.一种有缆钻杆信道参数的测量方法及系统:CN105604496B[P].2017-12-05.HU Yongjian,HUANG Yanfu,SUN Chengqin,et al.Cable drill rod channel parameter measuring method and system:CN105604496B[P].2017-12-05.
    [19]JOHNSON H,GRAHAM M.高速信号传输[M].邓晖,译.北京:电子工业出版社,2012.JOHNSON H,GRAHAM M.High-speed signal propagation advanced black magic[M].DENG H,trans.Beijing:Publishing House of Electronics Industry,2012.
    [20]徐兴福.ADS2011射频电路设计与仿真实例[M].北京:电子工业出版社,2014.XU Xingfu.ADS2011 RF circuit design and simulation example[M].Beijing:Publishing House of Electronics Industry,2014.
    [21]高奇峰,杨兆建,何吉利.分离式变压器电磁结构与参数分析[J].电力自动化设备,2009,29(9):141-144.GAO Qifeng,YANG Zhaojian,HE Jili.Electromagnetic structure and parameter analysis of separated transformer[J].Electric Power Automation Equipment,2009,29(9):141-144.
    [22]LEE T H.平面微波工程:理论、测量与电路[M].北京:清华大学出版社,2014.LEE T H.Planar microwave engineering:apractical guide to theory,measurements and circuits[M].Beijing:Tsinghua University Press,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700