用户名: 密码: 验证码:
西藏邦铺斑岩矽卡岩矿床二长花岗斑岩Sr-Nd-Pb-Hf同位素及闪锌矿黄铁矿Rb-Sr等时线年龄研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sr-Nd-Pb-Hf Isotope Compositions of Porphyritic Monzogranite and Rb-Sr Isochron Age of Sphalerite-Pyrite at the Bangpu Porphyry-Skarn Deposit
  • 作者:赵晓燕 ; 杨竹森 ; 刘英超 ; 裴英茹
  • 英文作者:ZHAO Xiaoyan;YANG zhusen;LIU Yingchao;PEI Yingru;School of Geosciences and Resources,China University of Geosciences;Institute of Mineral Resources,CAGS;Institute of Geology,CAGS;
  • 关键词:Sr-Nd-Pb同位素 ; 锆石Hf同位素 ; Rb-Sr等时线年龄 ; 斑岩-矽卡岩 ; 邦铺 ; 西藏
  • 英文关键词:Sr-Nd-Pb isotopes;;zircon Hf isotope;;Rb-Sr isochron age;;porphyry-skarn;;Bangpu;;Tibet
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质大学地球科学与资源学院;中国地质科学院矿产资源研究所;中国地质科学院地质研究所;
  • 出版日期:2015-03-15
  • 出版单位:地质学报
  • 年:2015
  • 期:v.89
  • 基金:青藏高原南部大陆聚合与成矿作用项目(编号:2011CB403104);; IGCP/SIDA-600联合资助成果
  • 语种:中文;
  • 页:DZXE201503007
  • 页数:12
  • CN:03
  • ISSN:11-1951/P
  • 分类号:56-67
摘要
邦铺钼多金属矿是形成于印亚板块碰撞后碰撞伸展环境中的大型富Mo(~0.09%)、贫Cu(~0.32%),并且伴生Pb-Zn的斑岩-矽卡岩矿床。邦铺矿床位于冈底斯斑岩成矿带东段北侧,其成矿年代(~15.32Ma)与冈底斯斑岩成矿带内其它典型的斑岩矿床具有一致性(12~18Ma)。邦铺矿床除了富Mo(Cu),还含有大量的Pb-Zn矿石,其中Mo(Cu)以斑岩型矿化为特征,而Pb-Zn则主要赋存于矽卡岩之中。本文立足邦铺矿床两大问题:矿床富Mo原因和斑岩-矽卡岩两期矿化的关系,借助含矿岩体二长花岗斑岩Sr-Nd-Pb和锆石Hf同位素及共生闪锌矿和黄铁矿的Rb-Sr等时线年龄研究,为更好地了解矿床成因和冈底斯斑岩成矿带成矿规律提供依据。对矽卡岩矿区共生的黄铁矿闪锌矿进行Rb-Sr定年,87 Rb/87Sr=0.2351~7.903,87Sr/86Sr=0.714011~0.715539,闪锌矿和黄铁矿的Rb-Sr等时线年龄为13.93±0.87Ma,其成矿时间与斑岩成矿时间(辉钼矿Re-Os年龄15.32Ma)近于一致;同时,在空间上,随着距离二长花岗斑岩距离的增大,石榴子石减少,方解石及其它碳酸盐矿物增多,矽卡岩矿物组合由高温向低温转变,闪锌矿颜色由不透明向半透明过渡,暗示了温度连续下降的过程;所以无论时间还是空间上,邦铺斑岩矿化和矽卡岩矿化都属于同一成矿系统。邦铺二长花岗斑岩(87Sr/86Sr)i值介于0.707504~0.710012之间,变化范围较小;εNd(t)值为-3.96~-3.56,TDM2为1020~1050Ma;206 Pb/204 Pb、207 Pb/204 Pb、208Pb/204Pb分别为18.304~18.439、15.744~15.793、38.842~38.904;锆石176 Hf/177 Hf为0.282826~0.283009,平均值为0.282916,εHf(t)值为2.2~8.7,平均值为5.4;全岩Sr-Nd-Pb及锆石Hf同位素特征指示邦铺二长花岗斑岩为壳幔源岩浆混合作用的产物,其壳源组分的含量相对于冈底斯斑岩成矿带典型的含矿斑岩更高。幔源物质来源于上涌的软流圈地幔而壳源物质为加入大量古老地壳成分的新生下地壳;由于Mo、Pb、Zn主要来自于古老的下地壳,含有大量古老地壳物质的新生下地壳源区解释了邦铺Mo(Cu)-Pb-Zn的金属元素组合。
        Bangpu deposit in Tibet is a large but poorly studied Mo-rich(~0.089%),and Cu-poor(~0.32%)porphyry deposit that formed in a post-collisional tectonic setting.The deposit is located in the Gangdese porphyry copper belt,and formed(~15.32 Ma)at the same time as other deposits within the belt(12~18Ma),although it is located further to the north and has a different ore assemblage(Mo-Pb-Zn-Cu)compared to other porphyry deposits(Cu-Mo)in this belt.Two types of mineralization have been identified in the Bangpu deposit:porphyry Mo-(Cu)and skarn Pb-Zn mineralization.In this paper,based on the whole rock Sr-Nd-Pb and zircon Hf isotopic compositions of the ore-bearing porphyritic monzogranite and Rb-Sr isotopic research on the coprecipitated pyrite and sphalerite,we discuss the mechanism of Mo enrichment at Bangpu and the relationship between the two types of mineralization.RbSr isotope dating of the paragenetic pyrite and sphalerite from the Bangpu Pb-Zn skarn deposit was carried out to figure out the relationship between porphyry and skarn mineralization events. We got a Rb-Sr isochron age yielded at 13.9±0.9Ma,which is almost identical to the age of porphyry mineraliztion(~15Ma).In addition,the account of garnet decreases and the account of both calcite and other carbonate minerals increase,the transformation from high temperature to low temperature skarn mineral compositions,the opaque to translucent sphalerite from the porphyritic monzogranite,suggesting the two types of mineralization in Bangpu deposit are formed in a signal porphyry-hydrothermal system.The(87Sr/86Sr)ivalues of the monzogranitic porphyry are 0.707504~0.710012 with a small range.TheεNd(t)are-3.96~-3.56 while the two stage depleted mantle model ages of Nd isotope are 883~938 Ma.The206Pb/204 Pb,207Pb/204 Pb,208Pb/204 Pb values are 18.304~18.439,15.744~15.793、38.842~38.904,respectively.Zircon 176 Hf/177 Hf are 0.282826~0.283009 with the mean data of 0.282916,whileεHf(t)=2.2~8.7averaging at 5.4.These data indicate that the ore-bearing monzogranitic porphyry was generated by the mixing process of crust-mantle while mantle component was directly derived from the upwelling asthenosphere and the crust was Lhasa juvenile lower continental crust with amounts of ancient crustal material,this also explains why the Bangpu deposit is enriched in Mo,Pb,Zn for Mo,Pb,Zn are dominately from the ancient crust.
引文
董国臣,莫宣学,赵志丹,王亮,周肃.2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报,24(6):549~557.
    方维萱,胡瑞忠,苏文超,肖加飞,蒋国豪,漆亮.2002.贵州镇远地区钾镁煌斑岩类的侵位时代.科学通报,47(4):307~312.
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MCICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595~2604.
    侯增谦,曲晓明,黄卫,高永丰.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,28(10):27~40.
    侯增谦,莫宣学,高永丰,曲晓明,孟祥金.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例.矿床地质,22(1):1~121.
    侯增谦,孟祥金,曲晓明,高永丰.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:斑岩相态及深部过程约束.矿床地质,24:108~121.
    侯增谦,潘小菲,杨志明,曲晓明.2007.初论大陆环境斑岩铜矿.现代地质,21(2):332~351.
    侯增谦,郑远川,杨志明,杨竹森.2012.大陆碰撞成矿作用:I.冈底斯新生代斑岩铜矿系统.矿床地质,31(4):647~670.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据.矿床地质,22(3):246~252.
    孟祥金,侯增谦,李振清.2005.西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究.矿床地质,24(4):398~408.
    孟祥金,侯增谦,李振清.2006.西藏驱龙铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示.地质学报,80(4):554~560.
    李志昌,蔡红,朱家平.1994.矿石、沉积岩年龄的直接测定.地质地球化学,(1):47~52.
    李光明,刘波,佘宏全,丰成友,屈文俊.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用-来自冲木达铜金矿床的Re-Os同位素年龄证据.地质通报,25(12):1481~1486.
    莫宣学,赵志丹,DePaolo D J,周肃,董国臣.2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,22(4):795~803.
    秦克章,李光明,赵俊兴,李金祥,薛国强,严刚,粟登奎,肖波,陈雷,范新.2008.西藏首例独立钼矿-冈底斯沙让大型钼矿的发现及其意义.中国地质,35(6):1101~1112.
    邱检生,肖娥,胡建,徐夕生,蒋少涌,李真.2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报,24(11):2468~2484.
    曲晓明,侯増谦,黄卫.2001.冈底斯斑岩矿(化)带:西藏第二条:“玉龙”铜矿带.矿床地质,20(4):355~366.
    唐菊兴,王登红,汪雄武,钟康惠,应立娟,郑文宝,黎枫佶,郭娜,秦志鹏,姚晓峰,李磊,王友,唐晓倩.2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报,31(4):495~506.
    王保弟,许继峰,陈建林,张兴国,王立全,夏抱本.2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报.26(6):1820~1832.
    王焕,唐菊兴,应立娟,王立强,秦志鹏.2011.西藏甲玛铜多金属矿床主要矿石矿物特征.成都理工大学学报(自然科学版),38(1):103~112.
    王银喜,顾连兴,张遵忠.2007.东天山晚石炭世大石头群流纹岩SrNd-Pb同位素地球化学研究.岩石学报,23(7):1749~1755.
    徐夕生,谢昕.2005.中国东南部晚中生代-新生代玄武岩与壳幔作用.高校地质学报,11(3):318~334.
    杨勇,罗泰义,黄智龙,杨竹森,田世洪,钱志宽.2010.西藏纳如松多银铅矿S、Pb同位素组成:对成矿物质来源的指示.矿物学报,30(3):311~318.
    杨志明.2008.西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因.中国地质科学院.博士学位论文:1~154.
    杨志明,侯增谦,夏代祥,宋玉财,李政.2008a.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质,27(3):28~36.
    杨志明,侯增谦,宋玉财,李振清,夏代祥,潘凤雏.2008b.西藏驱龙超大型斑岩铜矿床:地质、蚀变与矿化.矿床地质,27(3:279~318.
    杨志明,侯增谦.2009.西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H、O同位素证据.地质学报,83(12):1838~1859.
    杨志明,侯增谦,江迎飞,张洪瑞,宋玉财.2011.西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究.岩石学报,27(7):2003~2010.
    张学全,胡先才,温春齐.2009.西藏自治区墨竹工卡县邦铺钼(铜)多金属矿详查报告.拉萨:西藏地勘局地热地质大队.
    赵晓燕,杨竹森,侯增谦,刘英超,田世洪,付强,费凡.2013.西藏邦铺矿区辉绿玢岩成因及对区域构造岩浆演化的指示.岩石学报,29(11):3767~3778.
    周雄.2009.西藏邦铺铜钼多金属矿床流体包裹体研究.成都理工大学.硕士学位论文:1~90.
    周雄.2012.西藏邦铺铜钼多金属矿床成因研究.成都理工大学.博士学位论文:1~193.
    Amelin Y,Lee D C,Halliday A N,Robert T P.1999.Nature of theEarth's earliest crust from hafnium isotopes in single detritalzircons.Nature,399(6733):252~255.
    Blisniuk P M,Hacker B,Glodny J.2001.Normal faulting in centralTibet since at least 13.5Myr ago.Nature,412:628~632.
    Candela P A,Holland H D.1986.A mass transfer model for copperand molybdenum in magmatic hydrothermal systems:the originof porphyry-type ore deposits.Economic Geology,81:1~19.
    Cooke D R,Hollings P,Walshe J L.2005.Giant porphyry deposits:characteristics,distribution and tectonic controls.EconomicGeology,100,801~818.
    Ding L,Kapp P,Zhong D,Deng W.2003.Cenezoic volcanism inTibet:evidence for a transition from oceanic to continentalsubduction.Journal of Petrology,44:1883~1865.
    Harrison T M,Copeland P,Kidd W S F,Yin A.1992.Rising Tibet.Science 255:1663~1670.
    Hou Z Q,Gao Y F,Qu X M,Rui Z Y,Mo X X.2004.Origin ofadakite instrusives generated during mid-Miocene east-westextension in southern Tibet.Earth and Planetary ScienceLetters.220,139~155.
    Hou Z Q,Yang Z M,Qu X M,Meng X J,Li Z Q,G.Beaudoin,Rui ZY,Gao Y F,Khin Zaw.2009a.The Miocene Gangdeseporphyry copper belt generated during post-collisional extensionin the Tibetan Orogen.Ore Geology Reviews,36:25~51.
    HouZ Q,Cook N J.2009b.Metallogenesis of the Tibetan collisionalorogen:A review and introduction to the special issue.OreGeology Review,36:2~24.
    HouZ Q,Zhang H R,Pan X F,Yang Z M.2011.Porphyry Cu(-MoAu)deposits related to melting of thickened ma!c lower crust:Examples from the eastern Tethyan metallogenic domain.OreGeology Reviews,39:21~45.
    Hou Z Q,Zheng Y C,Yang Z M,Rui Z Y,Zhao Z D,Qu X M,Sun QZ.2012a.Contribution of mantle components within juvenilelower-crust to collisional zone porphyry Cu systems in Tibet.Mineralium Deposita,DOI:10.1007/S00126-012-0415-6.
    Hou Z Q,Zheng Y C,Zeng L S,Gao L E,Huang K X,Li W,Li Q Y,Liang W,Sun Q Z.2012b.Eocene-Oligocene granitoids ofsouthern Tibet:Constrains on crustal anatexis and tectonicevolution of the Himalayan orogen.Earth and Panletary ScienceLetters,349~350:38-52.
    Lowell J D,Guilbert J M.1970.Lateral and vertical alterationmineralization zoning in porphyry ore deposits.EconomicGeology,65,373~408.
    Qu X M,Hou Z Q,Li Y G.2004.Melt components derived from asubducted slab in late orogenic ore-bearing porphyries in theGangdese copper belt,southern Tibetan plateau.Lithos,74:131~148.
    Qu X M,Hou Z Q,Zaw K.2007.Characteristics and genesis ofGangdese porphyry copper deposits in the southern TibetanPlateau:Preliminary geochemical and geochronological results.Ore Geology Reviews,31:205~223.
    Richards J P.2003.Tectono-magmatic precursors for porphyry Cu-(Mo-Au)deposit formation.Economic Geology,98:1515~1533.
    Richards J P.2009.Postsubduction porphyry Cu-Au and epithermalAu deposits:Products of remelting of subduction-modifiedlithosphere.Geology,37(3):247~250.
    Robb L.2005.Introduction to ore-forming processes.Australia:Wiley-Blackwell Publishing,373.
    Sillitoe R H.1973.Geology of the Los Pelambres porphyry copperdeposit.Chile.Econ.Geol.68,1~10.
    Sillitoe R H,Hedenquist J W.2003.Linkages betweenvolcanotectonic settings,ore-fluid compositions and epithermalprecious metal deposits.Special Publication-Society of EconomicGeologists,10:315~343.
    Ulrich T,Heinrich C A.2001.Geology and alteration geochemistryof the porphyry Cu-Au deposit at Bajo de la Alumbrera,Argentina.Economic Geology,96(8):1719~1742.
    Ulrich T,Mavrogenes J.2008.An experimental study of thesolubility of molybdenum in H2Oand KCl-H2Osolutions from500℃to 800℃,and 150 to 300MPa.Geochimica etCosmochimica Acta.72,2316~2330.
    Vervoort J D,Blichert-Toft J.1999.Evolution of the depletedmantle:Hf isotope evidence from juvenile rocks through time.Geochimica et Cosmochimica Acta.63,533~556.
    Williams H,Turner S,Kelley S,Harris N.2001.Age andcompositions of dikes in Southern Tibet:new constraints on thetiming of east-west extension and its relationship to poorcollisional volcanism.Geology,29:339~342.
    Yang Z M,Hou Z Q,White N C,Chang Z S,Li Z Q,Song Y C.2009.Geology of the post-collisional porphyry coppermolybdenum deposit at Qulong,Tibet.Ore Geology Reviews,36:133~159.
    Yang Z M,Hou Z Q,Xu J F,Bian X F,Wang G R,Yang Z S,Tian SH,Liu Y C,Wang,Z L.2013.Geology and origin of the postcollisional Narigongma porphyry Cu-Mo deposit,southernQinghai,Tibet.Gandwana Research,http://dx.doi.org/10.1016/j.gr.2013.07.012.
    Yin A,Harrison T M.2000.Geologic evolution of the HimalayanTibetan orogrn.Annu.Rev.Earth Planet.Sci.28,211~280.
    Zhao X Y,Hou Z Q,Yang Z S,Zheng Y C,Liu Y C,Tian S H.2014.Geology and metallogenesis at Bangpu porphyry-skarn deposit,Tibet.Ore Geology Review.DOI:10.1016/j.oregeorev.2014.09.014.
    Zheng Y C,Hou Z Q,Li W,Liang W,Huang K X,Li Q Y,Sun Q Z,Fu Q,Zhang S.2012.Petrogenesis and Geological Implicationsof the Oligocene Chongmuda-Mingze Adakite-Like Intrusionsand their Mafic Enclaves,Southern Tibet.Chicago Journals,120(6):647~669.
    Zhu D C,Zhao Z D,Niu Y L,Dilek Y,Hou Z Q,Mo X X.2012.Theorigin and pre-Cenozoic evolution of the Tibetan.GondwanaResearch,23:1429~1454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700