用户名: 密码: 验证码:
青海省冬春季风蚀气候侵蚀力和起沙风日数的区域变化差异特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Regional Variation of Wind Erosion Climatic Erosivity and Number of Wind Days in Winter and Spring in Qinghai Province
  • 作者:祁栋林 ; 韩廷芳 ; 赵全宁 ; 赵慧芳 ; 苏文将
  • 英文作者:QI Donglin;HAN Tingfang;ZHAO Quanning;ZHAO Huifang;SU Wenjiang;Institute of Qinghai Meteorological Science Research;Qinghai Key Laboratory of Disaster Preventing and Reducing;Geermu Meteorological Bureau;
  • 关键词:风蚀气候侵蚀力 ; 起沙风日数 ; 相对贡献率 ; Mann-Kendall检验 ; 不同生态功能区 ; 青海省
  • 英文关键词:wind erosion climatic erosivity;;number of wind days;;relative contribution rate;;Mann-Kendall test;;different ecological function areas;;Qinghai Province
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:青海省气象科学研究所;青海省防灾减灾重点实验室;青海省格尔木市气象局;
  • 出版日期:2019-03-29
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.133
  • 基金:公益性行业(气象)科研专项(GYHY201506001);; 青海省科技厅项目(2017-SF-131,2013-N-148,2017-ZJ-Y02,2017-ZJ-Y28);; 青海省气象局重点项目“青海省空气质量客观预报方法研究”
  • 语种:中文;
  • 页:STBY201902005
  • 页数:9
  • CN:02
  • ISSN:61-1272/P
  • 分类号:27-34+40
摘要
利用1961—2015年青海省43个气象站观测资料,选择联合国粮农组织给出的风蚀气候因子指数计算公式,计算和统计了青海省和4个不同生态功能区冬、春季风蚀气候因子指数值和起沙风日数,以此分析研究了风蚀气候侵蚀力和起沙风日数的基本变化特征。结果表明:青海省和4个生态功能区冬、春季风蚀气候因子指数和起沙风日数整体上呈现显著减小趋势;风蚀气候因子指数和起沙风日数的空间分布特征完全一致,均整体呈现出从西部向东部减小的分布特点。以大柴旦、格尔木、曲麻莱和杂多为界分为东西两区,东区的C值和起沙风日数大部分分别在40,10 d以下,以诺木洪、天峻和刚察为中心分别向南向北逐渐减小;西区的C值和起沙风日数均分别大于40,10 d以上,从西向东逐渐减小;冬春季风蚀气候因子指数和起沙风日数分别在1992年、1997年发生突变,且分别在1995年和1999年进入显著下降趋势;影响青海省和4个生态功能区冬、春季风蚀气候因子指数的气象因素存在差异,同一影响因素在不同地区的影响程度也不同。在干旱的柴达木盆地主要受制于风速的作用,东部农业区和环青海湖区则受风速和降水量的影响,三江源地区和全省则受风速、温度和降水等的共同作用与影响;青海省和4个生态功能区气候呈暖湿化发展、植被覆盖缓慢上升及风速显著下降趋势,将为防治风蚀气候因子指数的发生提供有利条件。
        By using the observation data of 43 meteorological stations in Qinghai Province in 1961—2015 years, and the wind erosion climate factor index formula given by Food and Agricultural Organization of the United Nations, the wind erosion climate factor index and the number of wind days in the 4 different ecological functional regions of Qinghai in winter and spring were calculated and counted. Based on the above analysis, the basic characteristics of the wind erosion climatic erosivity and the number of wind days were discussed. The results showed that the wind erosion climate factor index and the number of wind days in winter and spring in the 4 different ecological functional regions of Qinghai presented the significant decreasing trend, and the spatial distribution characteristics of the wind erosion climate factor index and the number of wind days were all the same, showing the decreasing distribution from the west to the east. It was divided into the eastern and western areas by taking the Dachaidan, Golmud, Qumalai and Zaduo as the boundary. The C value and the number of wind days in the eastern region were mostly below 40 d and 10 d, respectively, and decreased from Nuomuhong, Tianjun and Gangcha to the south and the north; the C value and the number of wind days in the western region were greater than 40 d and 10 d, respectively, and gradually decreased from the west to the east. The mutations of the wind erosion climate factor index and the number of wind days in winter and spring occurred in 1992 and 1997, respectively, and entered a significant downward trend in 1995 and 1999, respectively. The meteorological factors affecting the wind erosion climate factor index in winter and spring in the 4 different ecological functional regions of Qinghai were different, and the influence degree of the same influence factors in different regions was also different. It was mainly controlled by wind speed in arid Qaidam Basin, affected by wind speed and precipitation in the eastern agricultural area and the Qinghai Lake area, and affected by wind speed, temperature and precipitation in the Three-River headwater area and the whole province. The development of climate warm and humidification, the slow rise of vegetation cover and the significant decreasing trend of wind speed in the 4 different ecological functional regions of Qinghai, will provide favorable conditions for controlling the occurrence of wind erosion climate factor index.
引文
[1]董玉祥.沙漠化灾害危险度评价的初步研究[J].自然灾害学报,1993,2(3):103-109.
    [2]董玉祥,康国定.中国干旱半干旱地区风蚀气候侵蚀力的计算和分析[J].水土保持学报,1994,8(3):1-7.
    [3]王永,赵举,程玉臣.阴山北麓农牧交错带风蚀气候侵蚀力的计算与分析[J].华北农学报,2005,20(S1):57-60.
    [4]邹春霞,申向东,李夏子,等.内蒙古阴山北麓农牧交错带风蚀气候侵蚀力特征[J].吉林大学学报:地球科学版,2011,41(4):1172-1178.
    [5]蒋冲,陈爱芳,喻小勇,等.黄土高原风蚀和水蚀复合区的风蚀气候侵蚀力变化[J].干旱区研究,2013,30(3):477-484.
    [6]杨兴华,何清,李红军,等.塔里木盆地风蚀气候侵蚀力的计算和分析[J].中国沙漠,2012,32(4):990-995.
    [7]祁栋林,李晓东,苏文将,等.近50年青海省风蚀气候侵蚀力时空演变趋势[J].水土保持研究,2015,22(6):234-239.
    [8]吴成永,陈克龙,曹广超,等.近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析[J].地理研究,2018,37(4):717-730.
    [9]张胜邦,董旭,刘玉璋,等.柴达木盆地东南部土壤风蚀研究[J].中国沙漠,1999,19(3):293-295.
    [10]贺大良,邹本功,李长治,等.地表风蚀物理过程风洞试验的初步研究[J].中国沙漠,1986,6(1):25-31.
    [11]申彦波,沈志宝,杜明远,等.风蚀起沙的影响因子及其变化特征[J].高原气象,2005,24(4):611-616.
    [12]王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞试验[J].冰川冻土,2004,26(5):632-638.
    [13]胡霞,刘连友,严平,等.不同地表状况对土壤风蚀的影响:以内蒙古太仆寺旗为例[J].水土保持研究,2006,13(4):116-119.
    [14]王翔宇,原鹏飞,丁国栋,等.不同植被覆盖防治土壤风蚀对比研究[J].水土保持研究,2008,15(5):38-41.
    [15]王根绪,李元寿,王一博.青藏高原河源区地表过程与环境变化[M].北京:科学出版社,2010.
    [16]李森,高尚玉,杨萍,等.青藏高原冻融荒漠化的若干问题:以藏西—藏北荒漠化区为例[J].冰川冻土,2005,27(4):476-485.
    [17]中国气象局国家气象中心.中国气象地理区划手册[M].北京:气象出版社,2011.
    [18]刘多森,汪纵生,可能蒸散量动力学模型的改进及其对辨识土壤水分状况的意义[J].土壤学报,1999,33(1):21-27.
    [19]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
    [20]顾骏强,施能,薛根元.近40年浙江省降水量、雨日的气候变化[J].应用气象学报,2002,13(3):322-329.
    [21]方精云.地理要素对我国温度分布影晌的数量评价[J].生态学报,1992,12(2):97-104.
    [22]陈晓光,李林,朱西德,等.青海省气候变化的区域性差异及其成因研究[J].气候变化研究进展,2009,5(5):249-254.
    [23]王慧.近50年青海省风速的变化特征分析[J].科技资讯,2013(1):130-131.
    [24]田莉,奚晓霞.近50年西北地区风速的气候变化特征[J].安徽农业科学,2011,39(32):20065-20068.
    [25]代子俊,赵霞,李冠稳,等.2000—2015年青海省植被覆盖的时空变化特征[J].西北农林科技大学学报:自然科学版,2018,46(7):1-12.
    [26]李璠,徐维新.2000—2015年青海省不同功能区NDVI时空变化分析[J].草地学报,2017,25(4):701-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700