用户名: 密码: 验证码:
蛋白质因子在调控骨改建过程中的作用机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in the mechanism of protein factors in regulating bone remodeling
  • 作者:李菊 ; 郭晓东 ; 李明政 ; 肖宇 ; 包崇云
  • 英文作者:LI Ju;GUO Xiaodong;LI Mingzheng;XIAO Yu;BAO Chongyun;State Key Laboratory of Oral Diseases, Sichuan University;National Clinical Research Center of Oral Diseases, Sichuan University;Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University;
  • 关键词:改建 ; 蛋白质 ; 成骨细胞 ; 破骨细胞
  • 英文关键词:Bone remodeling;;proteins;;osteoblast;;osteoclast
  • 中文刊名:ZXCW
  • 英文刊名:Chinese Journal of Reparative and Reconstructive Surgery
  • 机构:四川大学口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院口腔颌面外科;
  • 出版日期:2018-12-06 11:19
  • 出版单位:中国修复重建外科杂志
  • 年:2019
  • 期:v.33
  • 基金:“十三五”国家重点研发计划(2016YFC1102702);; 国家自然科学基金资助项目(81701027);; 华西口腔医院青年研究基金(WCHS-201612)~~
  • 语种:中文;
  • 页:ZXCW201901024
  • 页数:9
  • CN:01
  • ISSN:51-1372/R
  • 分类号:122-130
摘要
目的综述蛋白质因子在骨改建过程中的作用及机制,为进一步阐明骨相关疾病的发病机制及临床治疗提供理论依据。方法广泛查阅国内外近年相关研究成果,并加以分析、归纳和总结。结果骨改建是维持骨稳态的重要生理过程,蛋白作为骨改建过程中的重要刺激因子,调控着骨吸收与骨形成之间的平衡。结论目前对于蛋白在骨改建过程中的作用机制研究还不够充分,因此需要进一步深入研究相关蛋白在骨改建过程中的具体作用时间、作用过程以及蛋白质因子间相互作用网络,并确证其在骨改建中的作用机制,为骨相关疾病发病机制的揭示及治疗奠定基础。
        Objective To review the role and mechanism of protein factors in bone remodeling, and provides theoretical basis for further elucidating the pathogenesis and clinical treatment of bone-related diseases. Methods The relevant research results at home and abroad in recent years were extensively consulted, analyzed, and summarized.Results Bone remodeling is an important physiological process to maintain bone homeostasis. Protein, as an important stimulator in bone remodeling, regulates the balance between bone resorption and bone formation. Conclusion At present, the research on the mechanism of protein in bone remodeling is insufficient. Therefore, it is necessary to further study the specific time, process, and interaction network of protein in bone remodeling, and to confirm its mechanism in bone remodeling, so as to reveal and treat the pathogenesis of bone-related diseases.
引文
1Furuya M, Kikuta J, Fujimori S, et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat Commun, 2018, 9(1):300.
    2Montagnani A. Bone anabolics in osteoporosis:Actuality and perspectives. World J Orthop, 2014, 5(3):247-254.
    3V??n?nen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys, 2008, 473(2):132-138.
    4V??n?nen HK, Zhao H, Mulari M, et al. The cell biology of osteoclast function. J Cell Sci, 2000, 113(Pt 3):377-381.
    5Okaji M, Sakai H, Sakai E, et al. The regulation of bone resorption in tooth formation and eruption processes in mouse alveolar crest devoid of cathepsin k. J Pharmacol Sci, 2003, 91(4):285-294.
    6Garnero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem,1998, 273(48):32347-32352.
    7Borel O, Gineyts E, Bertholon C, et al. Cathepsin K preferentially solubilizes matured bone matrix. Calcif Tissue Int, 2012, 91(1):32-39.
    8Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res, 1999, 14(10):1654-1663.
    9 Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A, 1998, 95(23):13453-13458.
    10Drake MT, Clarke BL, Oursler MJ, et al. Cathepsin K inhibitors for osteoporosis:biology, potential clinical utility, and lessons learned.Endocr Rev, 2017, 38(4):325-350.
    11Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science, 1997, 276(5310):266-269.
    12Salo J, Lehenkari P, Mulari M, et al. Removal of osteoclast bone resorption products by transcytosis. Science, 1997, 276(5310):270-273.
    13V??r?niemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res, 2004, 19(9):1432-1440.
    14Ljusberg J, Wang Y, L?ng P, et al. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. J Biol Chem, 2005, 280(31):28370-28381.
    15Halleen JM, R?is?nen S, Salo JJ, et al. Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem, 1999,274(33):22907-22910.
    16Alatalo SL, Halleen JM, Hentunen TA, et al. Rapid screening method for osteoclast differentiation in vitrothat measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clin Chem, 2000, 46(11):1751-1754.
    17Rissanen JP, Suominen MI, Peng Z, et al. Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int, 2008, 82(2):108-115.
    18Wu Y, Lee JW, Uy L, et al. Tartrate-resistant acid phosphatase(TRACP 5b):a biomarker of bone resorption rate in support of drug development:modification, validation and application of the BoneTRAP kit assay. J Pharm Biomed Anal, 2009, 49(5):1203-1212.
    19Hill PA, Murphy G, Docherty AJ, et al. The effects of selective inhibitors of matrix metalloproteinases(MMPs)on bone resorption and the identification of MMPs and TIMP-1 in isolated osteoclasts. J Cell Sci, 1994, 107(Pt 11):3055-3064.
    20Spessotto P, Rossi FM, Degan M, et al. Hyaluronan-CD44interaction hampers migration of osteoclast-like cells by downregulating MMP-9. J Cell Biol, 2002, 158(6):1133-1144.
    21Samanna V, Ma T, Mak TW, et al. Actin polymerization modulates CD44 surface expression, MMP-9 activation, and osteoclast function. J Cell Physiol, 2007, 213(3):710-720.
    22Engsig MT, Chen QJ, Vu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol, 2000, 151(4):879-889.
    23Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev, 1999, 13(18):2412-2424.
    24Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A,2000, 97(4):1566-1571.
    25Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423(6937):337-342.
    26 Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin.Biochem Biophys Res Commun, 1998, 247(3):610-615.
    27Bucay N, Sarosi I, Dunstan CR, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.Genes Dev, 1998, 12(9):1260-1268.
    28Song R, Gu J, Liu X, et al. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Int J Mol Med, 2014, 34(3):856-862.
    29Jaffe AB, Hall A. Rho GTPases:biochemistry and biology. Annu Rev Cell Dev Biol, 2005, 21:247-269.
    30Palmqvist P, Persson E, Conaway HH, et al. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand,osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol, 2002, 169(6):3353-3362.
    31Hattersley G, Chambers TJ. Calcitonin receptors as markers for osteoclastic differentiation:correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology, 1989, 125(3):1606-1612.
    32Kulterer B, Friedl G, Jandrositz A, et al. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics,2007, 8:70.
    33Huang Z, Nelson ER, Smith RL, et al. The sequential expression profiles of growth factors from osteoprogenitors[correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng, 2007, 13(9):2311-2320.
    34Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int, 2006, 17(3):319-336.
    35Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol, 2012, 214(3):241-255.
    36Neve A, Corrado A, Cantatore FP. Osteocalcin:skeletal and extraskeletal effects. J Cell Physiol, 2013, 228(6):1149-1153.
    37Fleisher GA, Eickelberg ES, Elveback LR. Alkaline phosphatase activity in the plasma of children and adolescents. Clin Chem,1977, 23(3):469-472.
    38Canalis E. Effect of hormones and growth factors on alkaline phosphatase activity and collagen synthesis in cultured rat calvariae. Metabolism, 1983, 32(1):14-20.
    39Marie PJ, Travers R. Continuous infusion of 1,25-dihydroxyvitamin D3 stimulates bone turnover in the normal young mouse. Calcif Tissue Int, 1983, 35(4-5):418-425.
    40Farley JR, Baylink DJ. Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism, 1986, 35(6):563-571.
    41Fedde KN, Lane CC, Whyte MP. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma(SAOS-2)cells. Arch Biochem Biophys, 1988, 264(2):400-409.
    42Ullrich SJ, Glaubitz C. Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res, 2013, 46(9):2164-2171.
    43Haarhaus M, Brandenburg V, Kalantar-Zadeh K, et al. Alkaline phosphatase:a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol, 2017, 13(7):429-442.
    44Jikko A, Harris SE, Chen D, et al. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res, 1999, 14(7):1075-1083.
    45 Epstein EH Jr, Munderloh NH. Isolation and characterization of CNBr peptides of human(alpha 1(III))3 collagen and tissue distribution of(alpha 1(I))2 alpha 2 and(alpha 1(III))3 collagens.J Biol Chem, 1975, 250(24):9304-9312.
    46Jikko A, Harris SE, Chen D, et al. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res, 1999, 14(7):1075-1083.
    47Twine NA, Chen L, Pang CN, et al. Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 2014, 67:23-32.
    48Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res, 1994, 9(6):843-854.
    49Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture:an in vitro model of osteoblast development. J Bone Miner Res, 1992,7(6):683-692.
    50Mikami Y, Asano M, Honda MJ, et al. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase levels through JAK/STAT signaling in C3H10T1/2cells. J Cell Physiol, 2010, 223(1):123-133.
    51de Vries S, Albracht SP. Intensity of highly anisotropic low-spin heme EPR signals. Biochim Biophys Acta, 1979, 546(2):334-340.
    52Boskey AL, Gadaleta S, Gundberg C, et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcindeficient mice provides insight into the function of osteocalcin.Bone, 1998, 23(3):187-196.
    53Thurner PJ, Chen CG, Ionova-Martin S, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone,2010, 46(6):1564-1573.
    54Hauschka PV, Carr SA. Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry, 1982, 21(10):2538-2547.
    55Rammelt S, Neumann M, Hanisch U, et al. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J Biomed Mater Res A, 2005, 73(3):284-294.
    56Tsao YT, Huang YJ, Wu HH, et al. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells. Int J Mol Sci, 2017, 18(1):pii:E159.
    57Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature, 1996, 382(6590):448-452.
    58Bodine PV, Komm BS. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone, 1999,25(5):535-543.
    59Giachelli CM, Steitz S. Osteopontin:a versatile regulator of inflammation and biomineralization. Matrix Biol, 2000, 19(7):615-622.
    60Rodriguez DE, Thula-Mata T, Toro EJ, et al. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater, 2014, 10(1):494-507.
    61Kojima H, Uede T, Uemura T. In vitro and in vivo effects of the overexpression of osteopontin on osteoblast differentiation using a recombinant adenoviral vector. J Biochem, 2004, 136(3):377-386.
    62Mizuno M, Imai T, Fujisawa R, et al. Bone sialoprotein(BSP)is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on typeⅠcollagen matrix. Calcif Tissue Int,2000, 66(5):388-396.
    63 Gordon JA, Tye CE, Sampaio AV, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41(3):462-473.
    64Malaval L, Wade-Guéye NM, Boudiffa M, et al. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med, 2008, 205(5):1145-1153.
    65Cooper LF, Yliheikkil?PK, Felton DA, et al. Spatiotemporal assessment of fetal bovine osteoblast culture differentiation indicates a role for BSP in promoting differentiation. J Bone Miner Res, 1998, 13(4):620-632.
    66Gordon JA, Tye CE, Sampaio AV, et al. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41(3):462-473.
    67Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A, 1993, 90(18):8562-8565.
    68Meredith JE Jr, Winitz S, Lewis JM, et al. The regulation of growth and intracellular signaling by integrins. Endocr Rev, 1996, 17(3):207-220.
    69Giusta MS, Andrade H, Santos AV, et al. Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. Cytotherapy, 2010, 12(4):478-490.
    70Granéli C, Thorfve A, Ruetschi U, et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach.Stem Cell Res, 2014, 12(1):153-165.
    71Zhang AX, Yu WH, Ma BF, et al. Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Mol Cell Biochem, 2007, 304(1-2):167-179.
    72William F, Mroczkowski B, Cohen S, et al. Differentiation of HL-60cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol, 1988, 137(3):402-410.
    73Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev, 2006, 15(5):665-676.
    74周颖,侯树勋,陈秉耀,等.骨髓间充质干细胞定向诱导成骨分化的蛋白质组学分析.中国骨肿瘤骨病, 2009, 8(5):296-299.
    75Kim JM, Kim J, Kim YH, et al. Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol, 2013, 228(1):216-224.
    76Alves RD, Eijken M, Swagemakers S, et al. Proteomic analysis of human osteoblastic cells:relevant proteins and functional categories for differentiation. J Proteome Res, 2010, 9(9):4688-4700.
    77Pan X, Peng L, Yin G. Downregulation of Annexin A1 by short hairpin RNA inhibits the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Int J Mol Med, 2015,36(2):406-414.
    78Kim JS, Lee HK, Kim MR, et al. Differentially expressed proteins of mesenchymal stem cells derived from human cord blood(hUCB)during osteogenic differentiation. Biosci Biotechnol Biochem,2008, 72(9):2309-2317.
    79 Baroncelli M, van der Eerden BC, Kan YY, et al. Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization. J Cell Physiol, 2018,233(1):387-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700