用户名: 密码: 验证码:
金属-有机框架在二次电池中的储能机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the electrochemical storage mechanisms of metalorganic frameworks in secondary batteries
  • 作者:邓七九 ; 凤帅帅 ; 田聪聪 ; 惠鹏 ; 燕映霖 ; 杨蓉
  • 英文作者:DENG Qijiu;FENG Shuaishuai;TIAN Congcong;HUI Peng;YAN Yinglin;YANG Rong;School of Materials Science and Engineering, Xi'an University of Technology;School of Science, Xi'an University of Technology;
  • 关键词:金属-有机框架 ; 锂离子电池 ; 优化设计 ; 化学过程 ; 电化学
  • 英文关键词:metal-organic frameworks;;lithium-ion battery;;optimal design;;chemical processes;;electrochemistry
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安理工大学材料科学与工程学院;西安理工大学理学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:中国博士后面上项目(2018M633544);; 西安理工大学博士启动基金(101-451117007);; 国家国际科技合作专项项目(2015DFR50350);; 国家自然科学基金(51702256);; 陕西省科技计划(2017JQ5055);; 陕西省自然科学基础研究计划(2017GY-160)
  • 语种:中文;
  • 页:HGJZ201906016
  • 页数:8
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:142-149
摘要
金属-有机框架(MOFs)具有多孔、大比表面积和结构与功能可调控等特点,已被广泛用作二次电池电极材料。本文重点介绍了MOFs作为二次电池电极材料的储能机制研究进展,主要分为转化储能机制、脱嵌储能机制、物理吸脱附储能机制等,并分析了各类储能机理的储能特点及对电化学性能的影响,探究了MOFs在较大离子半径的钠、钾离子电池中的应用特点及发展潜力。最后简要讨论了MOFs作为电极材料的设计思路为兼顾各类储能机制的优点,即选用较多储能位点的结构及较稳定的金属离子作为有机配体的连接点。
        Metal organic frameworks(MOFs) with well-developed porosity, large specific surface area,controllable structure and functionalities have been widely used as electrode materials in secondary batteries. In this paper, the mechanisms of MOFs in secondary-ion batteries have been systematically reviewed in terms of the metal center and organic ligands, including conversion reaction, insert/de-insert mechanism, surface absorption/desorption mechanism. And the energy storage characteristics of various mechanisms and their impact on the electrochemical performance are also analyzed. Additionally, the potential applications of MOFs in secondary-ion batteries based on sodium-ion and potassium-ion with larger radius are also addressed. Finally, the structural design and development trend of an ideal MOFsbased electrode material are briefly outlined. Stable metal ions with abundant energy storage sites should be used as organic ligand conjunction.
引文
[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
    [2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
    [3] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy&Environmental Science, 2011, 4(8):2614-2624.
    [4] BLOOM I, TRAHEY L, ABOUIMRANE A, et al. Effect of interface modifications on voltage fade in 0.5Li2MnO3?0.5LiNi0.375Mn0.375Co0.25O2cathode materials[J]. Journal of Power Sources,2014, 249:509-514.
    [5] PING L, HUANG L, CARDINALI B, et al. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance[J]. Applied Materials&Interfaces, 2013, 5(11):5330-5335.
    [6] BELHAROUAK I, JOHNSON C, AMINE K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications, 2005, 7(10):983-988.
    [7] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176.
    [8]陈冠荣,《化工百科全书》部.化工百科全书(九卷)[M].北京:化学工业出版社, 1995.CHEN G R, Chemical encyclopedia. Chemical encyclopedia(Volume IX)[M]. Beijing:Chemical Industry Press,1995.
    [9] MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal–organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1248-1256.
    [10]郝召民,杜利利,王中英,等.功能MOFs材料的研究进展[J].化学研究, 2016, 27(2):144-151.HAO Z M, DOU L L, WANG Z Y, et al. Research progress in functional MOFs materials[J]. Chemical Research, 2016, 27(2):144-151.
    [11] MEILIKHOV M, FURUKAWA S, HIRAI K, et al. Binary janus porous coordination polymer coatings for sensor devices with tunable analyte affinity[J]. Angewandte Chemie International Edition, 2013, 52(1):341-345.
    [12] ZHAO D, YUAN D, ZHOU H C. The current status of hydrogen storage in metal-organic frameworks[J]. Energy&Environmental Science, 2008, 1(2):222-235.
    [13] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Cheminform, 2009, 38(5):1477-1504.
    [14] BAI L, TU B, QI Y, et al. Enhanced performance in gas adsorption and Li ion batteries by docking Li+in a crown ether-based metal-organic framework[J]. Chemical Communications, 2016, 52(14):3003-3006.
    [15]翟睿,焦丰龙,林虹君,等.金属有机框架材料的研究进展[J].色谱,2014, 32(2):107-116.ZHAI R, JIAO F L, LIN H J, et al. Research progress of metal organic framework materials[J]. Chromatography,2014, 32(2):107-116.
    [16]周馨慧,李洪辉.金属-有机骨架(MOFs)的最新研究进展[J].南京邮电大学学报:自然科学版, 2012, 32(3):100-110.ZHOUXH,LIHH.Recentadvancesinmetal-organicframeworks(MOFs)[J]. Journal of Nanjing University of Posts andTelecommunications:NaturalScienceEdition,2012,32(3):100-110.
    [17] ZHANG Y, LIN B, SUN Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances,2015, 5(72):58100-58106.
    [18] LIU B, SHIOYAMA H, JIANG H, et al. Metal–organic framework(MOF)as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48(2):456-463.
    [19] XIA W, QIU B, XIA D, et al. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage[J]. Scientific Reports, 2013, 3(6)1935.
    [20] FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013,341(6149):974.
    [21] ZHENG J, TIAN J, WU D, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J].Nano Letters, 2014, 14(5):2345-2352.
    [22] BAO W, ZHANG Z, QU Y, et al. Confine sulfur in mesoporous metalorganic framework@reduced graphene oxide for lithium sulfur battery[J]. Journal of Alloys&Compounds, 2014, 582(2):334-340.
    [23] WANG Z, LI X, CUI Y, et al. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life[J]. Crystal Growth&Design, 2013, 13(11):5116-5120.
    [24] SHEN L, SONG H, WANG C. Metal-organic frameworks triggered high-efficiencyListorageinFe-basedpolyhedralnanorodsfor lithiumion batteries[J]. Electrochimica Acta, 2017, 235:595-603.
    [25]张慧,周雅静,宋肖锴.基于金属-有机骨架前驱体的先进功能材料[J].化学进展, 2015, 27(2/3):174-191.ZHANG H, ZHOU Y J, SONG X K. Advanced functional materials based on metal-organic framework precursors[J]. Chemical Progress,2015, 27(2/3):174-191.
    [26] HUANG G, ZHANG F, DU X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2):1592-1599.
    [27] JIN Y, ZHAO C, SUN Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J].RSC Advances, 2016, 6(36):30763-30768.
    [28]李泓,吕迎春.电化学储能基本问题综述[J].电化学, 2015, 21(5):412-424.LI H, LüY C. Review of basic problems of electrochemical energy storage[J]. Electrochemistry, 2015, 21(5):412-424.
    [29] LI X, CHENG F, ZHANG S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1, 3, 5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160(1):542-547.
    [30] LIU Q, YU L, WANG Y, et al. Manganese-based layered coordination polymer:synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries[J]. Inorganic Chemistry, 2013, 52(6):2817-2822.
    [31] AN T, WANG Y, TANG J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage[J]. Journal of Colloid&Interface Science, 2015, 445:320-325.
    [32] JIN Y, ZHAO C, LIN Y, et al. Fe-based metal-organic framework and its derivatives for reversible lithium storage[J]. Journal of Materials Science&Technology, 2017(8):768-774.
    [33] ZHANG Z, YOSHIKAWA H, AWAGA K. Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC)(AQDC=anthraquinone dicarboxylate)in a lithium battery:coexistence of metal and ligand redox activities in a metal-organic framework[J]. Journal of the American Chemical Society, 2014, 136(46):16112-16115.
    [34] GONG T, LOU X, GAO E Q, et al. Pillared-layer metal-organic frameworks for improved lithium-ion storage performance[J]. ACS Applied Materials&Interfaces, 2017,9(26):21839-21847.
    [35] LI C, HU X, LOU X, et al. The organic-moiety-dominated Li+intercalation/deintercalation mechanism of a cobalt-based metalorganic framework[J]. Journal of Materials Chemistry A, 2016,4(41):16245-16251.
    [36] LOU X, HU X, LI C, et al. Room-temperature synthesis of cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries[J]. New Journal of Chemistry,2017, 41(4):1813-1819.
    [37] ZHANG Y, NIU Y B, LIU T, et al. A nickel-based metal-organic framework:a novel optimized anode material for Li-ion batteries[J].Materials Letters, 2015, 161:712-715.
    [38] LI T, LI C, HU X, et al. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal-organic framework with high capacity[J]. RSC Advances,2016, 6(66):61319-61324.
    [39] AN T, WANG Y, TANG J, et al. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage[J]. Journal of Colloid&Interface Science, 2015, 445:320-325.
    [40] HAN X, YI F, SUN T, et al. Synthesis and electrochemical performance of Li and Ni 1, 4, 5, 8-naphthalenetetracarboxylates as anodes for Li-ion batteries[J]. Electrochemistry Communications,2012, 25(1):136-139.
    [41] LOU X, NING Y, LI C, et al. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms[J]. Science China Materials, 2018,61(8):1040-1048.
    [42] LIAO Y, LI C, LOU X, et al. Highly reversible lithium storage in cobalt2, 5-dioxido-1, 4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance[J]. Journal of Colloid&Interface Science,2017,506:365-372.
    [43] LIN Y, ZHANG Q, ZHAO C, et al. An exceptionally stable functionalized metal-organic framework for lithium storage[J].Chemical Communications, 2015, 51(4):697-699.
    [44] ZHANG Z, YOSHIKAWA H, AWAGA K. Discovery of a“bipolar charging”mechanism in the solid-state electrochemical process of a flexible metal-organic framework[J]. Chemistry of Materials, 2016, 28(5):1298-1303.
    [45] DONGC,XUL.Cobal-andcadmium-basedmetal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(8):7160-7168.
    [46] AN Y, FEI H, ZHANG Z, et al. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs[J]. Chemical Communications, 2017, 53(59):8360-8363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700