用户名: 密码: 验证码:
基于扩展有限元的水平井改进拉链式压裂数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of modified zipper-type hydraulic fracture propagation in horizontal wells based on extended finite element method
  • 作者:冯其红 ; 李东杰 ; 时贤 ; 王森 ; 徐世乾 ; 秦勇 ; 安杰
  • 英文作者:FENG Qihong;LI Dongjie;SHI Xian;WANG Sen;XU Shiqian;QIN Yong;AN Jie;School of Petroleum Engineering in China University of Petroleum (East China);PetroChina Research Institute of Petroleum Exploration & Development;Oil & Gas Technology Research Institute,Changqing Oilfield Company,PetroChina;
  • 关键词:水平井 ; 改进拉链式压裂 ; 数值模拟 ; 扩展有限元 ; 缝间干扰
  • 英文关键词:horizontal well;;modified zipper-type hydraulic fracture;;numerical simulation;;extended finite element;;fracture interference
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:中国石油大学(华东)石油工程学院;中国石油勘探开发研究院;中国石油长庆油田公司油气工艺研究院;
  • 出版日期:2019-04-20
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2019
  • 期:v.43;No.232
  • 基金:国家自然科学基金石油化工联合基金(A类)重点支持项目(U1762213);; 国家自然科学基金项目(51704312,51704324);; 国家“973”重点基础研究发展计划(2015CB250905);; 国家重大科技专项(2017ZX05071007);; 中国博士后创新人才支持计划(BX201600153);; 山东省自然科学基金项目(ZR2017BEE009,ZR2016EL07)
  • 语种:中文;
  • 页:SYDX201902013
  • 页数:8
  • CN:02
  • ISSN:37-1441/TE
  • 分类号:110-117
摘要
为了研究水平井改进拉链式压裂的裂缝扩展规律,根据水力压裂流-固耦合理论,采用扩展有限元方法分析改进拉链式压裂过程中簇间距、地应力等因素对各条裂缝扩展形态和缝间诱导应力场的影响。结果表明:裂缝间距越大,簇间应力干扰作用越小,但对每条裂缝的影响程度不同;较大的裂缝间距能够保证压裂后形成的各条裂缝具有相似的形态,且压裂缝的长度更长并能从射孔处向两侧均匀延伸,从而实现储层的均衡开发;地应力差越大,各条裂缝的扩展越均匀,减少了裂缝发生偏转的可能,并能在一定程度上降低邻井裂缝发生沟通的风险。
        In order to study the crack propagation of modified zipper-type fractures in horizontal wells, based on the fluid-solid interaction theory, an extended finite element method was utilized to study the influences of fracture cluster spacing, crustal stress, and other factors on the pattern of fracture propagation and the induced rock stress in the process of modified zipper-type fracturing. The results show that large crack spacing can decrease the stress interferences between fracture clusters, while its influence to each crack is different. Large cluster spacing can cause the zipper-type fracturing cracks which have more similar morphology and long length. It also can make the cracks evenly extending from the perforation to both sides in the rock matrix, thus leading to stable development of the reservoirs. Large crustal stress can make the crack propagation more uniformly and reduce the risks of crack deflection. To some extent, it can decrease the risk of crack mergence between two horizontal wells.
引文
[1] 周健,陈勉,金衍,等.多裂缝储层水力裂缝扩展机理实验[J].中国石油大学学报(自然科学版),2008,32(4):51-59.ZHOU Jian,CHEN Mian,JIN Yan,et al.Experiment of propagation mechanism of hydraulic fracture in multi-fracture reservoir[J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(4):51-59.
    [2] 闫相祯,李向阳.基于裂缝干涉模型的非常规油气井压裂优化设计软件的开发与应用[J].中国石油大学学报(自然科学版),2013,37(5):120-128.YAN Xiangzhen,LI Xiangyang.Development and application of unconventional oil and gas well fracturing optimization design software based on fracture network interference model[J].Journal of China University of Petroleum (Edition of Natural Science),2013,37(5):120-128.
    [3] RAFIEE M,SOLIMAN M Y,PIRAYESH E.Hydraulic fracturing design and optimization:a modification to zipper fracture[R].SPE 159786-MS,2012.
    [4] 陈勉.页岩气储层水力裂缝转向机制[J].中国石油大学学报(自然科学版),2013,37(5):88-94.CHEN Mian.Re-orientation and propagation of hydraulicfractures in shale gas reservoir[J].Journal of China University of Petroleum (Edition of Natural Science),2013,37(5):88-94.
    [5] NAGEL N B,SANCHEZ-NAGEL M A,ZHANG F,et al.Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations[J].Rock Mechanics & Rock Engineering,2013,46(3):581-609.
    [6] 张广明,刘合,张劲,等.油井水力压裂流固耦合非线性有限元数值模拟[J].石油学报,2009,30(1):113-116.ZHANG Guangming,LIU He,ZHANG Jin,et al.Simulation of hydraulic fracturing of oil well based on fluid-solid coupling equation and non-linear finite element[J].Acta Petrolei Sinica,2009,30(1):113-116.
    [7] 王素玲,姜民政,刘合.基于损伤力学分析的水力压裂三维裂缝形态研究[J].岩土力学,2011,32(7):2205-2210.WANG Suling,JIANG Minzheng,LIU He.Study of hydraulic fracturing morphology based on damage mechanics analysis[J].Rock and Soil Mechanics,2011,32(7):2205-2210.
    [8] WU K.Simultaneous multi-frac treatments:fully coupled fluid flow and fracture mechanics for horizontal wells[J].SPE Journal,2013,20(2):337-346.
    [9] ZIENKIEWICZ O C,TAYLOR R L.The finite element method:an introduction with differential equations[M].Burlington:Elsevier,2005:42-45.
    [10] ZHU H,DENG J,JIN X,et al.Hydraulic fracture initiation and propagation from wellbore with oriented perforation[J].Rock Mechanics & Rock Engineering,2015,48(2):585-601.
    [11] KRESSE O,WENG X W,GU H R,et al.Numerical modelingof hydraulic fractures interaction in complex naturally fracturedformations[J].Rock Mechanics and Rock Engineering,2013,46(3):555-568.
    [12] 张广明,刘勇,刘建东,等.页岩储层体积压裂的地应力变化研究[J].力学学报,2015,47(6):965-972.ZHANG Guangming,LIU Yong,LIU Jiandong,et al.Research on the geostress change of shale reservoir volume fracturing[J].Chinese Journal of Theoretical and Applied Mechanics,2015,47(6):965-972.
    [13] SALEHI S,NYGAARD R.Full fluid-solid cohesive finite-element model to simulate near wellbore fractures[J].Journal of Energy Resources Technology,Transanctions of the ASME,2015,137(1):1-9.
    [14] 郭建春,尹建,赵志红.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报,2014,33(8):1589-1596.GUO Jianchun,YIN Jian,ZHAO Zhihong.Feasibility offormation of complex fractures under cracks interference in shalereservoir fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1589-1596.
    [15] HUNSWECK M J,SHEN Y,LEW A J.A finite elementapproach to the simulation of hydraulic fractures with lag[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(9):993-1015.
    [16] FRIES T P,BELYTSCHKO T.The extended/generalized finiteelement method:an overview of the method and its applications[J].International Journal for Numerical Methods in Engineering,2010,84(3):253-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700