用户名: 密码: 验证码:
Sr在耐热镁合金中的应用及研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and Research Progress of Strontium in Heat-resistant Magnesium Alloy
  • 作者:张娜 ; 程仁菊 ; 董含武 ; 刘文君 ; 詹俊 ; 蒋斌 ; 潘复生
  • 英文作者:ZHANG Na;CHENG Renju;DONG Hanwu;LIU Wenjun;ZHAN Jun;JIANG Bin;PAN Fusheng;Chongqing Academy of Science and Technology;College of Materials Science and Engineering,Chongqing University;
  • 关键词:Sr ; 镁合金 ; 耐热 ; 强化机制 ; 晶粒细化 ; 固溶度 ; 晶界强化
  • 英文关键词:strontium;;magnesium alloy;;heat resistance;;strengthening mechanisms;;grain refining;;solid solubility;;grain boundary strengthening
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:重庆市科学技术研究院;重庆大学材料科学与工程学院;
  • 出版日期:2019-07-01
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:重庆市重点产业共性关键技术创新专项项目(cstc2017zdcy-zdzxX0006);; 国家重点研发项目(2016YFB0301100);; 国家青年科学基金项目(51504052);; 重庆市基本科研业务费项目(2017cstc-jbky-00102);; 重庆市科研院所绩效激励引导专项项目(cstc2018jxjl0192);; 重庆市技术创新与应用示范重大主题专项项目(cstc2018jszx-cyzdx0082)~~
  • 语种:中文;
  • 页:CLDB201915014
  • 页数:7
  • CN:15
  • ISSN:50-1078/TB
  • 分类号:102-108
摘要
镁合金是国际上公认的最有潜力的轻量化材料之一,被誉为"21世纪绿色工程金属"。它的推广应用解决了我国关键装备和重大工程的轻量化问题,缓解了我国日益严峻的环境和能源危机。然而,镁合金强度偏低,尤其是高温强度和抗蠕变性能差,严重阻碍了其发展与应用。因此,常在镁合金中加入不同的合金元素来改善镁合金的微观组织和高温性能,其中价格低廉的碱土金属Sr就是一种提高镁合金高温性能的合金化元素。Sr可以提高镁固溶体的熔点,其在镁合金中扩散缓慢且具有较低的密度,因而在耐热镁合金中得到了广泛的应用。近年来,研究者们主要从Sr元素的成分优化及Sr与其他合金元素的合理搭配方面不断尝试,并取得了丰硕的成果,在适当添加元素Sr及/或其他元素后,耐热镁合金的高温性能得到了改善。目前较常用的镁合金系列有Mg-Al系、Mg-Zn系和Mg-RE系等。对Mg-Al系而言,向镁合金中加入碱土元素Sr,除了起到细晶强化的作用外,还可以在晶界处形成新相,该相具有高的熔点和热稳定性,能阻止高温下镁合金晶粒的长大和晶界的滑移,起到晶界强化的作用,从而明显提高镁合金的高温性能和抗蠕变能力。对Mg-Zn系而言,在铸态Mg-Zn合金中添加Sr元素后,合金的强度均获得一定程度的提高,但是塑性较低。因此研究者越来越关注Sr元素对变形镁合金性能的影响。在变形Mg-Zn合金中添加适量碱土元素Sr,除了起到细晶强化作用外,晶界处会析出Mg-Zn-Sr三元相,其具有更高的热稳定性,能够钉扎晶界,起到晶界强化的作用,提高镁合金的高温力学性能,同时使变形镁合金的塑性也得到提高。对Mg-RE系而言,加入适量的碱土元素Sr,不仅可降低实验成本,而且对合金的组织有很好的细化效果,第二相含量增加并且在晶界处分布更加均匀,使镁合金的高温力学性能得到提高。本文归纳了碱土元素Sr在Mg-Al系、Mg-Zn系和Mg-RE系耐热镁合金中的应用情况以及研究进展,分析讨论了碱土元素Sr改善镁合金高温性能的强化机制,指出了含Sr耐热镁合金目前存在的问题,并对其今后的发展方向进行了展望,为提高耐热镁合金的高温性能提供参考。
        Magnesium alloys are recognized as one of the most promising lightweight materials in the world. They are known as"green engineering metal in the 21 st century". Its application can solve the lightweight problem of key equipment and major projects and alleviate the increasingly severe environmental and energy crisis. However,the low strength of magnesium alloys,especially the poor performance in high temperature strength and creep deformation resistance,has seriously hindered its development. Therefore,alloying elements could also affect the deformation modes and the final texture either by dissolving in the Mg matrix or forming various precipitates. Among them,low-cost alkaline earth metal Sr is an alloying element which can improve the high temperature properties of magnesium alloys. Sr can improve the melting point of magnesium solid solution,diffuse slowly and has low density in magnesium alloys. It has been widely used in heat-resistant magnesium alloys. In recent years,researchers have been trying to optimize the Sr composition and its reasonable combination with other alloying elements,and have achieved fruitful results. The high temperature properties of heat-resistant magnesium alloys have been improved by adding Sr and/or other elements.At present,the more commonly used magnesium alloys are Mg-Al,Mg-Zn and Mg-RE. For Mg-Al system,adding alkaline earth element Sr can form a new phase at grain boundary besides fine grain strengthening. The phase has high melting point and thermal stability,which can prevent grain growth and grain boundary slip at high temperature and play the role of grain boundary strengthening,thus significantly improving the high temperature properties and creep resistance of magnesium alloys. For Mg-Zn system,the strength of as-cast Mg-Zn alloys increases to a certain extent by adding Sr element,but the plasticity is low. Therefore,researchers pay more and more attention to the effect of Sr on the properties of wrought magnesium alloys. In addition to fine grain strengthening,Mg-Zn-Sr ternary phase precipitates at grain boundary after adding appropriate amount of Sr in deformed Mg-Zn alloys. It has higher thermal stability and can pin grain boundaries,play the role of grain boundary strengthening,improve the high temperature mechanical properties of magnesium alloys,and improve the plasticity of wrought magnesium alloys. For the Mg-RE system,the proper addition of alkaline earth element Sr not only reduces the cost of the experiment,but also has a good refinement effect on the structure of the alloy. The content of the second phase increases and they are distributed more uniform at grain boundaries,which improve the high temperature mechanical properties of magnesium alloys.In this paper,the application and research progress of alkaline earth element Sr in Mg-Al,Mg-Zn and Mg-RE heat-resistant magnesium alloys are summarized. The strengthening mechanism of alkaline earth element Sr to improve the high temperature properties of magnesium alloys is discussed. The existing problems of Sr-containing heat-resistant magnesium alloys are pointed out,and the future development is prospected. It provides reference for improving high temperature performance of heat-resistant magnesium alloys.
引文
1 Poddar P,Kamaraj A,Murugesan A P,et al. Journal of Magnesium&Alloys,2017,5(3),348.
    2 Stjohn D H,Easton M A,Qian M,et al. Metallurgical&Materials Transactions A,2013,44(7),2935.
    3 Bi Y,Yang M B,Zou J,et al. Journal of Chongqing University of Technology(Natural Science),2017,31(12),63(in Chinese).毕媛,杨明波,邹静,等.重庆理工大学学报(自然科学),2017,31(12),63.
    4 You S,Huang Y,Kainer K U,et al. Journal of Magnesium&Alloys,2017,5(3),239.
    5 Bai J,Sun Y S,Xue F,et al. Scripta Materialia,2006,55(12),1163.
    6 Wu L,Pan F S,Yang M B,et al. Journal of Materials Science,2013,48(16),5456.
    7 Cheng R J,Pan F S,Jiang S,et al. Progress in Natural Science:Materials International,2013,23(1),7.
    8 Wu L,Pan F S,Yang M B,et al. Journal of Chongqing University,2014,37(3),1.
    9 Wu L,Pan F S,Yang M B,et al. Transactions of Nonferrous Metals Society of China,2011,21(4),784.
    10 Chen Y,Gao J J,Song Y,et al. Materials Science&Engineering A,2016,671,127.
    11 Zhang Y C,Yang L,Dai J,et al. Materials Science&Engineering A,2014,610(29),309.
    12 Wang W D,Han J J,Yang X,et al. Materials Science&Engineering B,2016,214,26.
    13 Sani S A,Ebrahimi G R,Rashid A R K. Journal of Magnesium&Alloys,2016,4(2),104.
    14 Feng Z X,Pan F S,Shi Q N,et al. Journal of Functional Materials,2014,45(7),07061.
    15 Bai J,Sun Y S,Xue F,et al. Materials Science&Engineering A,2012,531(1),130.
    16 Hirai K,Somekawa H,Takigawa Y,et al. Materials Science&Engineering A,2005,403(1),276.
    17 Zhang D D,Zhang D P,Bu F Q,et al. Materials Science&Engineering A,2017,693,51.
    18 Sevik H,Kurnaz S C. Journal of Magnesium and Alloys,2014,2(3),214.
    19 Kim B H,Park K C,Yong H P,et al. Materials Science&Engineering A,2011,528(3),808.
    20 Sevik H,Acikgoz S,Kurnaz S C. Journal of Alloys&Compounds,2010,508(1),110.
    21 Bai J,Sun Y S,Xun S,et al. Materials Science&Engineering A,2006,419(1),181.
    22 Kim B H,Park K C,Park Y H,et al. Transactions of Nonferrous Metals Society of China,2010,20(7),118.
    23 Xu C X,Ju H,Zhang Z W. The Chinese Journal of Nonferrous Metals,2013(2),349(in Chinese).许春香,鞠辉,张志玮.中国有色金属学报,2013(2),349.
    24 Kumar P,Mondal A K,Chowdhury S G,et al. Materials Science&Engineering A,2017,683,37.
    25 Yang M B,Zhu Y,Pan F S,et al. Transactions of Nonferrous Metals Society of China,2010,20(s2),306.
    26 Cheng M X,Chen J H,Yan H G,et al. Journal of Alloys&Compounds,2017,691,95.
    27 Cong M Q,Li Z Q,Liu J S,et al. Materials&Design,2014,53(1),430.
    28 Li Z,Chen M F,Li W,et al. Journal of Alloys&Compounds,2017,702,290.
    29 Liu J W,Peng X D,Li M L,et al. Materials Science&Engineering A,2016,655(S1),331.
    30 Chen Y,Gao J,Song Y,et al. Materials Science&Engineering A,2016,671,127.
    31 Peng B,Zhang X B,Wang Z Z. Heat Treatment of Metals,2014,39(11),41(in Chinese).彭勃,章晓波,王章忠.金属热处理,2014,39(11),41.
    32 Yang M B,Li H L,Cheng R J,et al. Materials Science&Engineering A,2012,545,201.
    33 Liu S M,Diao H,Chai L J,et al. Materials Science&Engineering A,2017,679,183.
    34 Liu D,Yin X,Pang X,et al. Journal of Materials Engineering&Performance,2017,26,1.
    35 Pan F S,Yang M B,Shen J,et al. Materials Science and Engineering A,2011,528(13-14),4292.
    36 Yang M B,Pan F S,Liang X F. Journal of Materials Science,2011,46(9),3216.
    37 Yang M B,Pan F S,Shen J,et al. Journal of Materials Engineering&Performance,2012,21,47.
    38 Zhang S,Zhou Q,Zhang H,et al. Special Casting&Nonferrous Alloys,2015,35(9),981(in Chinese).章森,周全,张浩,等.特种铸造及有色合金,2015,35(9),981.
    39 Cui Zhongqi,Qin Yaochun. Metallography and heat treatment-second edition,Machinery Industry Press,China,2007(in Chinese).崔忠圻,覃耀春.金属学与热处理-第2版,机械工业出版社,2007.
    40 Nussbau G M,Brihot P,Warner T J,et al. In:Magnesium Alloys and Their Applications. Germany,1992,pp.351.
    41 Lee Y C,Dahle A K,Stjohn D H. Metallurgical and Materials Transactions A,2000,31(11),2895.
    42 Aliravci C A,Gruzleski J E,Dimayuga F C. American Foundry Society Transactions,1992,100,353.
    43 Bai X. Development of alkaline-earth and heat-resistant AM80-Ca-Sr magnesium alloys. Master’s Thesis,Hunan University,China,2009(in Chinese).白星.AM80-Ca-Sr碱土耐热镁合金研究.硕士学位论文,湖南大学,2009.
    44 Cui H W,Min G H,Liu J C. Rare Materials and Engineering,2010,39(2),273(in Chinese).崔红卫,闵光辉,刘俊成.稀有金属材料与工程,2010,39(2),273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700