用户名: 密码: 验证码:
深海氮气浮标运动特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Motion analysis of deep-sea nitrogen floats
  • 作者:陈丹峰 ; 邹一麟 ; 曾铮 ; 魏照宇 ; 姚宝恒 ; 连琏
  • 英文作者:CHEN Danfeng;ZOU Yilin;ZENG Zheng;WEI Zhaoyu;YAO Baoheng;LIAN Lian;State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University;Institute of Oceanography,Shanghai Jiao Tong University;CCS Wuhan Rules & Research Institute,China Classification Society;
  • 关键词:氮气浮标 ; 剖面运动 ; 定深悬浮 ; 蓄能器 ; 悬浮稳定
  • 英文关键词:nitrogen float;;profiling movement;;depth keeping;;accumulator;;suspension stability
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:上海交通大学海洋工程国家重点实验室;上海交通大学海洋研究院;中国船级社武汉规范研究所;
  • 出版日期:2019-03-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金(51779142,41527901,41706108);; 国家重点研发专项(2016YFC0303707);; 青岛海洋科学与技术国家实验室项目(2017ASKJ01,QNLM2016ORP0104)
  • 语种:中文;
  • 页:HYGC201902013
  • 页数:8
  • CN:02
  • ISSN:32-1423/P
  • 分类号:116-123
摘要
氮气浮标是一种新型的剖面浮标,通过增加蓄能器作为被动浮力调节模块,可以利用海洋压差实现更有效率的剖面运动。由于蓄能器的加入,氮气浮标的运动特性相对于常规浮标有所变化。基于一款深海剖面浮标,利用理论分析和运动仿真的方法研究了氮气浮标的运动特性,对氮气浮标主动体积改变量与剖面运动深度之间的对应关系、氮气浮标的剖面运动形式以及氮气浮标的定深悬浮稳定性进行研究。研究表明,氮气浮标只需要主动对浮标体积做较小的改变即可完成同等深度的剖面运动,节省了浮标完成一次剖面运动的能量消耗。但蓄能器的引入增加了浮标完成剖面运动需要的时间,且给浮标的运动带来了突变性和不稳定性。
        Nitrogen profiling float can utilize oceanic pressure to achieve a more efficient profiling movement by adding energy accumulator as passive buoyancy adjustment module. Due to the addition of the accumulator,the motion charateristics of nitrogen floats are different from those of conventional ones. In this paper,the movement characteristics of nitrogen floats are studied by means of theoretical analysis and motion simulation based on one type of deep-sea profiling float. The researches include the corresponding relationship between the active volume change and the depth of profiling movement,the qualitative problem of profiling movement and the stability problem of depth-keeping. The results show that the nitrogen float can complete the same depth profiling movement only by making minor changes in the volume,which saves the energy consumption to complete a profiling movement. However,the accumulator increases the time needed for the float to complete the profiling movement,and brings sudden change and instability to the movement of the float.
引文
[1] LE T P Y. From satellite altimetry to Argo and operational oceanography:Three revolutions in oceanography[J]. Ocean Science,2013,9(5):901-915.
    [2] RISER S C,FREELAND H J,ROEMMICH D,et al. Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change,2016,6(2):145-153.
    [3]陈鹿,潘彬彬,曹正良,等.自动剖面浮标研究现状及展望[J].海洋技术学报,2017,36(2):1-9.(CHEN L,PAN B B,CAO Z L,et al. Research status and prospects of automatic profiling floats[J]. Journal of Ocean Technology,2017,36(2):1-9.(in Chinese))
    [4]邢小罡,赵冬至,CLAUSTRE H,等.一种新的海洋生物地球化学自主观测平台:Bio-Argo浮标[J].海水环境科学,2012(5):733-739.(XING X G,ZHAO D Z,CLAUSTRE H,et al. A new autonomous observation platform of marine biogeochemistry:Bio-Argo floats[J]. Marine Environmental Science,2012,31(5):733-739.(in Chinese))
    [5] ZILBERMAN N,MAZE G. Report on the deep Argo implementation workshop[C]//Deep Argo Implementation Workshop.2015.
    [6] PETZRICK E,TRUMAN J,FARGHER H. Profiling from 6 000 meter with the APEX-Deep float[C]//Proceedings of the IEEE Oceans. 2014:1-3.
    [7] KOBAYASHI T,WATANABE K,TACHIKAWA M. Deep NINJA collects profiles down to 4000 meters[J]. Sea Technology,2013,54(2):41-44.
    [8] SERGE L R,VINCENT D,XAVIER A,et al.“Deep-Arvor”:A new profiling float to extend the Argo observations down to4000m depth[J]. Journal of Atmospheric&Oceanic Technology,2016,33(5):10.1175/JTECH-D-15-0214. 1.
    [9] STEPHEN C R. Profiling to 2 000 m anywhere in the world ocean:Advances with APEX floats[J]. Newsletter of the International Argo Project,2008(10):7-8.
    [10] ROEMMICH D,JOHNSON G C,RISER S,et al. The Argo program:Observing the global ocean with profiling floats[J].Oceanography,2009,22(2):34-43.
    [11]朱伯康,刘仁清,许建平.一种专门用于低纬度洋区观测的Argo剖面浮标[J].海洋技术学报,2009,28(4):123-125.(ZHU B K,LIU R Q,XU J P. A special Argo float used in low latitude of the world oceans[J]. Ocean Technology,2009,28(4):123-125.(in Chinese))
    [12]邹一麟,曹军军,姚宝恒,等.新型蓄能器浮标上浮运动水动力性能研究[J].舰船科学技术,2018,40(3):42-48.(ZOU Y L,CAO J J,YAO B H,et al. Research on the dynamic performance of floating motion of a new type float with energy accumulator[J]. Ship Science and Technology,2018,40(3):42-48.(in Chinese))
    [13]王世明,吴爱平,马利娜.剖面探测浮标上浮运动研究[J].船舶工程,2010,32(6):57-59.(WANG S M,WU A P,MA L N. Study on buoy with floating movement by section detection[J]. Ship Engineering,2010,32(6):57-59.(in Chinese))
    [14]陈鹿,崔维成,潘彬彬.深海剖面测量浮标节能研究[J].中国造船,2017(3):128-135.(CHEN L,CUI W C,PAN B B.Study on energy saving for deep-sea profiling float[J]. Shipbuilding of China,2017(3):128-135.(in Chinese))
    [15] DAVIS R E,WEBB D C,REGIER L A,et al. The autonomous Lagrangian circulation explorer(ALACE)[J]. Journal of Atmospheric and Oceanic Technology,1992,9(3):264-285.
    [16]董涛,杨庆保.自持式剖面循环探测漂流浮标水下运动过程实例分析[J].海洋技术学报,2006,25(1):20-23.(DONG T,YANG Q B. The analysis of underwater moving for China's ocean profiling explorer(COPEX)[J]. Ocean Technology,2006,25(1):20-23.(in Chinese))
    [17] YANG Y,LIU Y,WANG Y,et al. Dynamic modeling and motion control strategy for deep-sea hybrid-driven underwater gliders considering hull deformation and seawater density variation[J]. Ocean Engineering,2017,143:66-78.
    [18] WU K T,YAO B H,FU B,et al. Research on the performance of passive heave compensator for tethered remotely operated vehicle system[J]. Journal of Shanghai Jiao Tong University(Science),2011,16(1):40-44.
    [19] WEBB D C,SIMONETTI P J,JONES C P. SLOCUM:an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering,2001,26(4):447-452.
    [20] YANG Y,WANG Y,MA Z,et al. A thermal engine for underwater glider driven by ocean thermal energy[J]. Applied Thermal Engineering,2016,99:455-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700