用户名: 密码: 验证码:
重金属污染土壤微生物修复技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on microbial remediation technology for heavy metal contaminated soil
  • 作者:杨海 ; 黄新 ; 林子增 ; 丁炜 ; 何秋玫
  • 英文作者:YANG Hai;HUANG Xin;LIN Zi-zeng;DING Wei;HE Qiu-mei;School of Civil Engineering of Nanjing Forestry University;
  • 关键词:重金属污染 ; 微生物修复 ; 影响因素 ; 机理
  • 英文关键词:heavy metal pollution;;microbial remediation;;influencing factors;;mechanism
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:南京林业大学土木工程学院;
  • 出版日期:2019-05-24 10:19
  • 出版单位:应用化工
  • 年:2019
  • 期:v.48;No.328
  • 基金:国家自然科学基金(51608272)
  • 语种:中文;
  • 页:SXHG201906039
  • 页数:6
  • CN:06
  • ISSN:61-1370/TQ
  • 分类号:179-184
摘要
对重金属污染土壤微生物修复问题进行了综述。第一个论题为微生物修复技术的影响因素,包括微生物种类;重金属浓度;外界因素:温度,p H,盐浓度。第二个论题为微生物修复技术机理,包括生物吸附、富集,生物转化,生物溶解、沉淀。在结尾就微生物修复技术发展前景进行了展望,以期为我国受重金属污染土壤的治理借鉴经验。
        Based on papers published at home and abroad in recent years. Microbial remediation of heavy metal contaminated soil is reviewed. The first topic is the influencing factors of microbial remediation technologies,including: the type of host microorganisms; Concentration of heavy metals; External factors: temperature,p H,salt concentration. The second topic is the mechanism of microbial remediation technology,including biological adsorption,enrichment,biological transformation,biological dissolution and precipitation. At the end of this paper,the prospect of microbial remediation technology was prospected,hoping to be a reference for the treatment of heavy metal contaminated soil in China.
引文
[1] Li F,Zhang J,Liu W,et al. An exploration of an integrated stochastic-fuzzy pollution assessment for heavy metals in urban topsoil based on metal enrichment and bioaccessibility[J]. Science of the Total Environment,2018,644:649-660.
    [2]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,36(5):10-11.
    [3] Yang Q,Li Z,Lu X,et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J]. Science of the Total Environment,2018,642:690-700.
    [4] Araujo C F S D,Lopes M V,Vasquez M R,et al. Cadmium and lead in seafood from the Aratu Bay,Brazil and the human health risk assessment[J]. Environmental Monitoring&Assessment,2016,188(4):259-270.
    [5] Wuana R A,Okieimen F E. Heavy metals in contaminated soils:A review of sources,chemistry,risks and best available strategies for remediation[J]. Isrn Ecology,2011,2011(2090-4614):1-20.
    [6] Jin Y,Luan Y,Ning Y,et al. Effects and mechanisms of microbial remediation of heavy metals in soil:A critical review[J]. Applied Sciences,2018,8(8):1336-1352.
    [7] Mikiya Hiroki. Effects of heavy metal contamination on soil microbial population[J]. Soil Science&Plant Nutrition,1992,38(1):141-147.
    [8] Loukidou M X,Matis K A,Zouboulis A I,et al. Removal of As(V)from wastewaters by chemically modified fungal biomass[J]. Water Research,2003,37(18):4544-4552.
    [9]郜雅静,李建华,靳东升,等.重金属污染土壤的微生物修复技术探讨[J].山西农业科学,2018(1):150-154.
    [10] Mishra V,Gupta A,Kaur P,et al. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils[J]. International Journal of Phytoremediation,2015,18(7):697-703.
    [11] Liu H,Guo S,Jiao K,et al. Bioremediation of soils cocontaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima[J]. Journal of Hazardous Materials,2015,294:121-127.
    [12] Babu A G,Shea P J,Oh B T. Trichoderma sp. PDR1-7promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites[J]. Science of the Total Environment,2014,476/477:561-567.
    [13] Ren W X,Li P J,Geng Y,et al. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J]. Journal of Hazardous Materials,2009,167(1/2/3):164-169.
    [14]黄成涛,黄位权,史鼎鼎,等.一株耐铅镉真菌Q7对香根草吸收累积重金属的效应[J].应用与环境生物学报,2018,24(4):901-907.
    [15] Zotti M,Di P S,Roccotiello E,et al. Microfungi in highly copper-contaminated soils from an abandoned Fe-Cu sulphide mine:growth responses,tolerance and bioaccumulation[J]. Chemosphere,2014,117(1):471-476.
    [16] Kanwal S,Bano A,Malik R N. Effects of arbuscular mycorrhizal fungi on metals uptake,physiological and biochemical response of Medicago Sativa L. with increasing Zn and Cd concentrations in soil[J]. American Journal of Plant Sciences,2015,6(18):2906-2923.
    [17] Abuelsaoud A M,Nafady N A,Abdelazeem A M. Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat[J]. Plos One,2017,12(11):e0188220.
    [18] Devi S S,Sreenivasulu Y,Rao K V B. Protective role of Trichoderma logibrachiat-um(WT2)on lead induced oxidative stress in Helianthus annus L.[J]. Indian Journal of Experimental Biology,2017,55(4):235-241.
    [19]熊智慧,朱莹莹,周清,等.产碱菌Alcaligenes sp. qz-1对铬污染土壤中玉米生长和铬累积的影响研究[J].生态科学,2018,37(4):52-58.
    [20]史鼎鼎,梁小迪,徐少慧,等. EDTA与耐性细菌对黑麦草吸收复合污染红壤中铅镉的影响[J].农业环境科学学报,2018,37(8):1634-1641.
    [21] Sinha S,Mukherjee S K. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization[J]. Current Microbiology,2008,56(1):55-60.
    [22] Sun L N,Zhang Y F,He L Y,et al. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J]. Bioresour Technol,2010,101(2):501-509.
    [23] Fossokankeu E,Mulababafubiandi A F,Mamba B B,et al. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms[J]. Journal of Environmental Management,2011,92(10):2786-2793.
    [24] Braud A,Jézéquel K,Bazot S,et al. Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J].Chemosphere,2009,74(2):280-286.
    [25] Wang L,Lin H,Dong Y,et al. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation[J]. Journal of Hazardous Materials,2017,341:1-9.
    [26]刘玉玲,铁柏清,李园星露,等.耐镉细菌的分离及其对土壤中镉的形态影响[J].农业环境科学学报,2018,37(2):250-258.
    [27]Ma Y,Rajkumar M,Moreno A,et al. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress[J].Chemosphere,2017,185:75-85.
    [28] Desjardin V,Bayard R,Lejeune P,et al. Utilisation of supernatants of pure cultures of streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils[J]. Water Air&Soil Pollution Focus,2003,3(3):153-160.
    [29]林梵宇,王润萍,易志伟,等.海洋解木糖赖氨酸芽孢杆菌JZ008对重金属Cd2+、Cr3+和Cu2+的吸附作用[J].应用海洋学学报,2018,37(3):387-394.
    [30]李同灵,黄寒娟,彭漪,等.耐铅微生物的筛选及其吸附性的初步测定[J].安徽农业大学学报,2018,45(4):696-702.
    [31]杨文,陈小敏,朱保虎,等.一株耐汞菌的分离鉴定及其去汞特性[J].环境工程学报,2017,11(1):602-607.
    [32]吴翰林,刘茂炎,刘峰. 1株耐镉木霉菌株的筛选鉴定[J].贵州农业科学,2016,44(6):94-98.
    [33]汪婵娟,熊治廷,徐仲瑞,等.有色金属矿区植物根际耐镉菌的分离鉴定与镉吸附特性[J].生态与农村环境学报,2018,34(5):448-455.
    [34] Fan T,Liu Y,Feng B,et al. Biosorption of cadmium(II),zinc(II)and lead(II)by Penicillium simplicissimum:Isotherms,kinetics and thermodynamics[J]. Journal of Hazardous Materials,2008,160(2):655-661.
    [35]徐淑霞,杜文涛,王晓雅,等. 1株耐Cd细菌的分离、鉴定及其吸附特性研究[J].河南农业科学,2017,46(5):71-76,83.
    [36]黄惠,孙璐,蒋继宏,等.真菌LP-20对金属矿土壤镉锌的固定化作用研究[J].环境科学与技术,2014(12):36-39.
    [37] Burcu Ertit Ta?tan,Sevgi Ertuˇg rul,Gnül Dnmez. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor[J]. Bioresource Technology,2010,101(3):870-876.
    [38]陈亚奎,徐粲然,朱启法,等.粘质沙雷氏菌HB-4吸附重金属镉的机制[J].化工学报,2017,68(4):1574-1581.
    [39]喻涌泉,黄魏魏,董建江,等.硝基还原假单胞菌吸附重金属镉的机理研究[J].中国环境科学,2017,37(6):2232-2238.
    [40] Joutey N T,Sayel H,Bahafid W,et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms[J]. Rev Environ Contam Toxicol,2015,233:45-69.
    [41] Pulsawat W,Leksawasdi N,Rogers P L,et al. Anions effects on biosorption of Mn(II)by extracellular polymeric substance(EPS)from Rhizobium etli[J]. Biotechnology Letters,2003,25(15):1267-1270.
    [42] Li N J,Zhang X H,Wang D Q,et al. Contribution characteristics of the in situ extracellular polymeric substances(EPS)in Phanerochaete chrysosporium to Pb immobilization[J]. Bioprocess and Biosystems Engineering,2017,40(10):1447-1452.
    [43] Deepika K V,Raghuram M,Kariali E,et al. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean[J]. Ecotoxicology&Environmental Safety,2016,134:1-10.
    [44]常海伟,刘代欢,贺前锋.重金属污染农田微生物修复机理研究进展[J].微生物学杂志,2018,38(2):114-121.
    [45] Rani A,Souche Y S,Goel R. Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean[J].International Biodeterioration&Biodegradation,2009,63(1):62-66.
    [46] Beolchini F,Dell'Anno A,De P L,et al. Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals[J].Chemosphere,2009,74(10):1321-1326.
    [47] Prakash D,Pandey J,Tiwary B N,et al. Physiological adaptations and tolerance towards higher concentration of selenite(Se(+4))in Enterobacter sp. AR-4,Bacillus sp. AR-6 and Delftia tsuruhatensis AR-7[J]. Extremophiles,2010,14(3):261-272.
    [48] Oves M,Khan M S,Zaidi A. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa,OSG41 enhance chickpea growth in chromium amended soils[J]. European Journal of Soil Biology,2013,56(2):72-83.
    [49] Govarthanan M,Lee K J,Min C,et al. Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings[J]. Chemosphere,2013,90(8):2267-2272.
    [50] Lu P,Nuhfer N T,Kelly S,et al. Lead coprecipitation with iron oxyhydroxide nano-particles[J]. Geochimica Et Cosmochimica Acta,2011,75(16):4547-4561.
    [51] Jeong S,Moon H S,Nam K,et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium(Cd)from polluted soil[J]. Chemosphere,2012,88(2):204-210.
    [52]邓平香,张馨,龙新宪.产酸内生菌荧光假单胞菌R1对东南景天生长和吸收、积累土壤中重金属锌镉的影响[J].环境工程学报,2016,10(9):5245-5254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700