用户名: 密码: 验证码:
太赫兹段慢波结构的微细加工技术研究新进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New Progress of Microfabrication Techniques for Slow Wave Structures at THz Frequencies
  • 作者:吴春亚 ; 郭闯强 ; 裴旭东 ; 王廷章 ; 陈妮 ; 陈明君
  • 英文作者:WU Chunya;GUO Chuangqiang;PEI Xudong;WANG Tingzhang;CHEN Ni;CHEN Mingjun;State Key Laboratory of Robotics and System, Harbin Institute of Technology;School of Mechatronics Engineering, Harbin Institute of Technology;College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics;
  • 关键词:太赫兹波 ; 慢波结构 ; 微细加工 ; 电真空器件
  • 英文关键词:terahertz radiation;;slow wave structure;;microfabrication;;vacuum electron device
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:哈尔滨工业大学机器人技术与系统国家重点实验室;哈尔滨工业大学机电工程学院;南京航空航天大学机电学院;
  • 出版日期:2018-09-12 08:53
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:“十三五”装备预研共用技术、国家重点研发计划(2017YFB0305903);; 国家自然科学基金创新研究群体科学基金(51521003)资助项目
  • 语种:中文;
  • 页:JXXB201907027
  • 页数:12
  • CN:07
  • ISSN:11-2187/TH
  • 分类号:203-214
摘要
太赫兹波兼具穿透性强、使用安全性高、定向性好、带宽高等技术特性,在国防、深空通信、远程成像、安全检查和医疗诊断等领域具有重大应用前景。基于慢波结构的电真空器件是在太赫兹频段产生瓦级功率输出,同时实现太赫兹辐射源小型化和经济化最具潜力的一种解决方式。慢波结构作为此类电真空器件的核心零件,其物理设计及制造水平将直接影响器件的带宽和增益,因此,从适合工作在太赫兹频段的慢波结构类型、加工精度与表面质量要求,以及制备工艺3个方面出发,对慢波结构的微细加工技术研究现状进行综述,重点分析太赫兹频段慢波结构的关键制造技术水平及应用现状,并探讨其在发展过程中需要面临的挑战和仍需注重解决的问题,希望能为后续高频器件研究工作的推进提供参考。
        Since terahertz(THz) radiation is characterized with strong penetrability, high security, good directionality, and wide bandwidth, the potential applications of THz technology are becoming increasing widespread, including national defense, deep space communications, remote high resolution imaging, concealed weapon or threat detection, biomedical diagnostics, etc. Vacuum electron device(VED) based on slow wave structures(SWSs) is the most promising solution for the generation of watt-level power at THz frequencies in a compact and affordable way. As a key part of VED, the physical design and fabrication technique for SWSs will directly influence the bandwidth and gain of VED. Therefore, this work reviews the development of the available microfabrication techniques for SWSs from three aspects, i.e., the specific types of SWSs suitable for working at THz frequencies, the requirement of manufacturing precision and surface quality for SWSs, and the corresponding microfabrication processing. The respective capabilities and application status of fabrication technologies for SWSs in the THz regime have been analyzed, with the main challenges needing to be responded to and the problems needing to be solved discussed in detail. This work is expected to present reference background for advancing the development of high frequency devices.
引文
[1]DUAN J,FU Q,MO C H,et al.Review of polarization imaging for international military application[C]//5th International Symposium on Photoelectronic Detection and Imaging(ISPDI)-Imaging Sensors and Applications.SPIE-Int Soc Optical Engineering,Beijing,China,2013.
    [2]贾刚,汪力.太赫兹波(TeraHertz)科学与技术[J].中国科学基金,2002,16(4):200-203.JIA Gang,WANG Li.Terahertz science and technology[J].Bulletin of National Science Foundation of China,2002,16(4):200-203.
    [3]邱桂花,于名讯,韩建龙,等.太赫兹雷达及其隐身技术[J].火控雷达技术,2013,42(4):28-32.QIU Guihua,YU Mingxun,HAN Jianlong,et al.Terahertz radar and its stealth technique[J].Fire Control Radar Technology,2013,42(4):28-32.
    [4]PARROTT E P J,SUN Y W,PICKWELL-MACPHERSON E.Terahertz spectroscopy:Its future role in medical diagnoses[J].Journal of Molecular Structure,2011,1006(1-3):66-76.
    [5]SLINGERLAND E J,JAHNGEN E G E,GOYETTE TM,et al.Terahertz absorption spectra of nitromethane[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2011,112(14):2323-2329.
    [6]李纪舟,蒋文涛.太赫兹波通信技术研究现状及展望[J].通信技术,2014,47(4):348-353.LI Jizhou,JIANG Wentao.Terahertz communication technology research status and prospects[J].Communications Technology,2014,47(4):348-353.
    [7]QinetiQ.QinetiQ Technology Showcase-New Technology Products[EB/OL].[2012-05-25].SPO-20 Technology Showcase.http://technologyshowcase.qinetiq.com/.
    [8]成彬彬.0.14THz超高分辨成像雷达实验研究[J].中国工程物理研究院科技年报,2012(1):142-144.CHENG Binbin.Experimental researches on 0.14THz ultra-high resolution imaging radar[J].Science and Technology Annual Report of China Academy of Engineering Physics,2012(1):142-144.
    [9]中国电子科技集团.中国电科完成全固态太赫兹成像雷达系统样机研制[EB/OL].[2016-06-19].https://military.china.com/important/11132797/20160619/22897749.html.China Electronics Technology Group.Development of prototype of all-sdild-state ferahertz imaging radar system in China Electronics Technology Group.[2016-06-19].https://military.china.com/important/11132797/20160619/22897749.html.
    [10]马成举,陈延伟,向军,等.太赫兹辐射产生技术进展[J].激光与光电子进展,2007,44(4):56-61.MA Chengju,CHEN Yanwei,XIANG Jun,et al.Progress in generation of terahertz radiation[J].Laser&Optoelectronics Progress,2007,44(4):56-61.
    [11]王自成,陆德坚,王莉,等.THz返波管圆波导梳状慢波结构的研究[J].电子与信息学报,2008,30(11):2792-2794.WANG Zicheng,LU Dejian,WANG Li,et al.Investigation of circular comb slow-wave structure of THz backward-wave oscillators[J].Journal of Electronics&Information Technology,2008,30(11):2792-2794.
    [12]ZHANG M H,WEI Y Y,GUO G,et al.A novel 140-GHz sheet-beam folded-waveguide traveling-wave tube[J].Journal of Electromagnetic Waves and Applications,2012,26(17-18):2332-2340.
    [13]ZHANG M H,WEI Y Y,GUO G,et al.Study on two kinds of novel 220 GHz folded-waveguide traveling-wave tube[J].Japanese Journal of Applied Physics,2014,53(3):036201-1-036201-6.
    [14]MINEO M,PAOLONI C.Corrugated rectrangular waveguide tunable backward wave oscillator for terahertz applications[J].IEEE Transactions on Electron Devices,2010,57(6):1481-1484.
    [15]LIU Q L,WANG Z C,LIU P K,et al.A THz backward-wave oscillator based on a double-grating rectangular waveguide[J].IEEE Transactions on Electron Devices,2013,60(4):1463-1468.
    [16]XU X,WEI Y Y,FEI S,et al.A watt-class 1-THz backward-wave oscillator based in sine waveguide[J].Physics of Plasmas,2012,19(013113):013113.
    [17]GHOSH T K,CHALLIS A J,TOKELEY A,et al.Development of ultra wide band helix mini-TWTs[C]//IEEE International Vacuum Electronics Conference,Monterey,USA,2010,303-304.
    [18]DATTA S K,KUMAR L,BASU B N.Analysis of dielectric loss in a helix slow-wave structure[J].Defence Science Journal,2009,59(5):549-552.
    [19]SCHEITRUM G P.Microfabricated MVEDs[C]//Modern Mircrowave and Millimeter-Wave Power Electronics,Piscataway,USA,2005,343-395.
    [20]KOROVIN S D,MESYATS G A,PEGEL I V,et al.Pulse-width limitation in the relativistic backward wave oscillator[J].IEEE Transactions on Plasma Science,2000,28(3):485-495.
    [21]王亚军,徐翱,颜胜美,等.微加工工艺误差对THz折叠波导行波管性能影响[J].太赫兹科学与电子信息学报,2015,13(2):179-183.WANG Yajun,XU Ao,YAN Shengmei,et al.Effect of microfabrication process on terahertz folded waveguide TWT[J].Journal of Terahertz Science and Electronic Information Technology,2015,13(2):179-183.
    [22]SRIVASTAVA A.Microfabricated terahertz vacuum electron devices:Technology,capabilities and performance overview[J].European Journal of Advances in Engineering and Technology,2015,2(8):54-64.
    [23]GHODSSI R,LIN P.MEMS materials and processes handbook[M].Berlin:Springer,2011.
    [24]FU C,HUAN H.Different methods for the fabrication of UV-LIGA molds using SU-8 with tapered de-molding angles[J].Microsystem Technologies,2007,13(3-4):293-298.
    [25]JOYE C D,CALAME J P,NGUYEN K,et al.Microfabrication of wideband,distributed beam amplifiers at 220 GHz[C]//IEEE International Vacuum Electronics Conference,Bangalore,India,2011,343-344.
    [26]BAIG A,SHIN Y M,BARNETT L R,et al.Design,fabrication and RF testing of near-THz sheet beam TWTA[J].Terahertz Science and Technology,2011,4(4):181-207.
    [27]CLAUDIO P,ALDO D C,FRANCESCA B,et al.Design and fabrication of a 1 THz backward wave amplifier[J].Terahertz Science and Technology,2011,4(4):149-163.
    [28]COLIN D J,JEFFREY P C,ALAN M C,et al.High-power copper gratings for a sheet-beam traveling-wave amplifier at G-band[J].IEEE Transactions on Electron Devices,2013,60(1):506-509.
    [29]COLIN D J,ALAN M C,JEFFREY P C,et al.Demonstration of a high power,wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA[J].IEEETransactions on Electron Devices,2014,61(6):1672-1678.
    [30]COLIN D J,ALAN M C,REGINALD L J,et al.Microfabrication methods for a 233 GHz traveling wave amplifier[C]//Eighteenth International Vacuum Electronics Conference,London,UK,2017.
    [31]GHONEIM M T,HUSSAIN M M.Highly manufacturable deep(sub-millimeter)etching enabled high aspect ratio complex geometry lego-like silicon electronics[J].Small,2017,13(16):UNSP 1601801.
    [32]YEOM J,WU Y,SELBY J C,et al.Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect[J].Journal of Vacuum Science&Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena,2005,23(6):2319-2330.
    [33]SENGELE S,JIANG H,BOOSKE J H,et al.Microfabrication and characterization of a selectively metallized W-band meander-line TWT circuit[J].IEEETransactions on Electron Devices,2009,56(5):730-737.
    [34]BASTEN M A,TUCEK J C,GALLAGHER D A,et al.A 0.85 THz vacuum-based power amplifier[C]//IEEEThirteenth International Vacuum Electronics Conference,Monterey,USA,2012.
    [35]BAIK C W,JUN S Y,AHN H Y,et al.Return loss measurement of a microfabricated slow-wave structure for backward-wave oscillation[C]//35th International Conference on Infrared,Millimeter,and Terahertz Waves,Rome,Italy,2010.
    [36]BAIK C W,KIM Y,AHN H Y,et al.Enhanced RFperformance in multi-tunnel backward-wave oscillators[C]//IEEE International Vacuum Electronics Conference,Rome,Italy,2014.
    [37]余祖元,郭东明,贾振元.微细电火花加工技术[J].中国科技论文在线,2007,2(3):214-220.YU Zuyuan,GUO Dongming,JIA Zhenyuan.Micro electrical discharge machining technology[J].Sciencepaper Online,2007,2(3):214-220.
    [38]FENG J J,CAI J,HU Y F,et al.Development of w-band folded waveguide pulsed TWTs[J].IEEE Transactions on Electron Devices,2014,61(6):1721-1725.
    [39]SUMATHY M,AUGUSTIN D,DATTA S K,et al.Design and RF characterization of w-band meander-line and folded-waveguide slow-wave structures for TWTs[J].IEEE Transactions on Electron Devices,2013,60(5):1769-1775.
    [40]BRATMAN V L,FEDOTOV A E,MAKHALOV P B,et al.Design and numerical analysis of w-band oscillators with hollow electron beam[J].IEEE Transactions on Electron Devices,2014,61(6):1795-1799.
    [41]刘俊,周亚军,戴晶怡,等.0.22THz折叠波导慢波结构微细WEDM加工技术[J].太赫兹科学与电子信息学报,2014,12(3):330-333.LIU jun,ZHOU Yajun,DAI Jingyi,et al.Micro-WEDMtechnology of 0.22 THz folded waveguide slow wave structure[J].Journal of Terahertz Science and Electronic Information Technology,2014,12(3):330-333.
    [42]KIRSCH B,BOHLEY M,ARRABIYEH P A,et al.Application of ultra-small micro grinding and micro milling tools:Possibilities and limitations[J].Micromachines,2017,8(9):261.
    [43]GAMZINA D,BARCHFELD R,BARNETT L R,et al.Nano CNC milling technology for terahertz vacuum electronic devices[C]//IEEE International Vacuum Electronics Conference,Bangalore,India,2011.
    [44]BARCHFELD R,GAMZINA D,BAIG A,et al.Nano CNC milling of two different designs of 0.22 THz TWTcircuits[C]//IEEE International Vacuum Electronics Conference,Monterey,USA,2012.
    [45]BAIG A,GAMZINA D,BARCHFELD R,et al.220 GHz ultra wide band TWTA:Nano CNC fabrication and RFtesting[C]//IEEE International Vacuum Electronics Conference,Paris,France,2013.
    [46]BüSSING H,GREDE A,HENKE H.Development of a w-band folded waveguide TWT[C]//Germany Microwave Conference(GeMIC),Aachen,Germany,2014.
    [47]LEE I,SAWANT A,SO J,et al.Design study of an energy-recirculating G-band self-driving folded waveguide travelling wave tube[C]//IEEE International Vacuum Electronics Conference,Monterey,USA,2016.
    [48]HIMES L,GAMZINA D,POPOVIC B,et al.Development of nano machining techniques to bridge the terahertz gap[C]//IEEE International Vacuum Electronics Conference,Monterey,USA,2016.
    [49]BAIG A,GAMZINA D,KIMURA T,et al.Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier[J].IEEE Transactions on Electron Devices,2017,64(5):2390-2397.
    [50]GAMZINA D,HIMES L G,BARCHFELD R,et al.Nano-CNC machining of sub-THz vacuum electron devices[J].IEEE Transactions on Electron Devices,2016,63(10):4067-4073.
    [51]徐翱,周泉丰,阎磊,等.0.22 THz折叠波导行波管初步实验研究[J].强激光与粒子束,2013,25(11):2954-2958.XU Ao,ZHOU Quanfeng,YAN Lei,et al.Initial experimental study on 0.22 THz folded waveguide TWT[J].High Power Laser and Particle Beams,2013,25(11):2954-2958.
    [52]陈学斌,高石磊,孙传国,等.微径铣刀在太赫兹波导加工中的应用[J].微波学报,2015(S1):108-111.CHEN Xuebin,GAO Shilei,SUN Chuanguo,et al.Application of micro-mill in the processing of terahertz wave-guide[J].Journal of Microwaves,2015(S1):108-111.
    [53]颜胜美,苏伟,徐翱,等.多注太赫兹折叠波导行波管的设计与模拟[J].太赫兹科学与电子信息学报,2015,13(2):184-202.YAN Shengmei,SU Wei,XU Ao,et al.Design and simulation of multi-beam terahertz folded waveguide TWT[J].Journal of Terahertz Science and Electronic Information Technology,2015,13(2):184-202.
    [54]颜胜美.多注太赫兹折叠波导行波管技术研究[D].绵阳:中国工程物理研究院,2015.YAN Shengmei.Research on multi-beam terahertz folded waveguide TWT[D].Mianyang:China Academy of Engineering Physics,2015.
    [55]HU P,LEI W Q,SONG R,et al.Development of a 0.32THz folded waveguide TWT[C]//Eighteenth International Vacuum Electronics Conference,London,UK,2017.
    [56]裴旭东.太赫兹慢波结构微铣削加工仿真与实验研究[D].哈尔滨:哈尔滨工业大学,2017.PEI Xudong.Research on micro-milling of THz slow wave structure by simulation and experiments[D].Harbin:Harbin Institute of Technology,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700