用户名: 密码: 验证码:
多层Al/Ni含能薄膜在电容放电激励下的能量释放特性和规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Laws of Energy Release for Multilayer Al/Ni RMFs Under Capacitive Discharge Excitation
  • 作者:付帅 ; 沈瑞琪 ; 朱朋 ; 叶迎华 ; 马宏玲
  • 英文作者:FU Shuai;SHEN Rui-qi;ZHU Peng;YE Ying-hua;MA Hong-ling;School of Chemical Engineering,Nanjing University of Science and Technology;
  • 关键词:Al/Ni含能薄膜 ; 换能元 ; 电爆性能 ; 输出能量
  • 英文关键词:Al/Ni reactive multilayer films;;initiator;;electrical-explosion performance;;output energy
  • 中文刊名:HNCL
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:南京理工大学化工学院;
  • 出版日期:2018-12-13 16:04
  • 出版单位:含能材料
  • 年:2019
  • 期:v.27;No.160
  • 基金:航天创新基金资助(CASC150710);; 江苏省自然科学基金资助(BK20151486)
  • 语种:中文;
  • 页:HNCL201902016
  • 页数:7
  • CN:02
  • ISSN:51-1489/TK
  • 分类号:77-83
摘要
为了研究Al/Ni含能薄膜的能量释放特性和规律,采用微细加工方法制备了双"V"型夹角的Al/Ni含能薄膜换能元。研究了Al/Ni含能薄膜换能元在47μF固体钽电容放电激励下的能量释放特性和规律。电爆炸测试时,用自主研制的ALG-CN1储能放电起爆仪作激励电源。电容器用47μF固体钽电容,充电电压为10~45 V。用高速摄影仪(HG-100K)观察换能元的发火过程。用数字示波器(LeCroy44Xs,4通道)记录换能元发火时电流、电压随时间的变化曲线。结果表明,Al/Ni含能薄膜换能元在电容激励下的电爆过程按照电流变化率(dI/dt)可以分为三个阶段:回路寄生电感的储能,换能元的电爆炸及等离子体加热。与相同桥型的NiCr薄膜换能元比较,所制备的Al/Ni含能薄膜换能元具有输出能量高以及电爆后产生的火花飞溅距离长的特点。发火回路的寄生电感对于换能元的起爆具有重要作用。Al/Ni含能薄膜换能元电爆炸时的输出能量主要来源于两部分:电容的输入能量和含能薄膜释放的化学能。
        To investigate the characteristics and laws of energy releasefor Al/Ni reactive multilayer films( RMFs), Al/Ni RMFs initiator with double "V" type angle was fabricated by a micro-fabrication method and its characteristics and laws of energy release under 47 μF solid tantalum capacitor discharge excitation were studied. When electric explosion testing, the self-developed ALG-CN1 energy storage discharge detonator was used as an excitation power source. A 47 μF solid tantalum capacitor with a charging voltage of 10 V to 45 V was used. A high-speed camera( HG-1 00 K) was used to observe the firing process of the initiator. A digital oscilloscope( LeCroy44 Xs, 4 channnels) was used to record the current and voltage curves of the initiator.Results show that the electrical explosion process of Al/Ni RMFs initiator can be divided into three stages according to the change rate of current( dl/dt) : energy storage of parasitic inductance, electrical explosion of initiator and plasma heating. Comparison with NiCr film initiator of same bridge type,under the same excitation condition of 30 V/47 μF, the fabricated Al/Ni RMFs initiator has high output energy and long spark spattering distance after electrical explosion. The parasitic inductance of the firing circuit plays an important role in the initiation of the initiator. The output energy of Al/Ni RMFs initiator during electric explosion mainly comes from two parts: the input energy of capacitor and the chemical energy released by energetic film. When the excitation voltage is30 V, the chemical energy contributes to the output energy of Al/Ni RMFs initiator is higher, which can reach 40% of the total output energy.
引文
[1]朱朋.基于含能复合薄膜的非线性电爆换能元[D].南京:南京理工大学,2014.ZHU Peng. Non‐linear electro‐explosive devices based on en‐ergetic multilayer films[D]. Nanjing:Nanjing University ofScience and Technology,2014.
    [2] Rogachev A S. Exothermic reaction waves in multilayer nano‐films[J]. Russian Chemical Reviews,2008,77(1):22-38.
    [3] Simoes S,Viana F,Kocak M,et al. Microstructure of reactionzone formed during diffusion bonding of TiAl with Ni/Almulti‐layer[J]. Journal of Materials Engineering&Performance,2012,21(5):678-682.
    [4] Ding M S,Krieger F C,Swank J A. Developing nano foil‐heat‐ed thin‐film thermal battery[R]. Army research lab AdelphiMD sensors and electron devices directorate,2013.
    [5]张彬,褚恩义,任炜,等. MEMS火工品换能元的研究进展[J].含能材料,2017,25(5):428-436.ZHANG Bin,CHU En‐yi,REN Wei,et al. Research progressin energy conversion components for MEMS initiating explo‐sive device[J]. Chinese Journal of Energetic Materials(Han?neng Cailiao),2017,25(5):428-436.
    [6] Baras F,Turlo V,Politano O,et al. SHS in Ni/Al nanofoils:Areview of experiments and molecular dynamics simulations[J]. Advanced Engineering Materials,2018,20(8):91-111.
    [7] Azadmanjiri J,Berndt C C,Wang J,et al. Nanolaminatedcomposite materials:structure,interface role and applications[J]. Rsc Advances,2016,6(111):109361-109385.
    [8]王亮,何碧,蒋小华,等. Al/Ni多层膜中反应波传播速度的理论研究[J].含能材料,2009,17(2):233-235.WANG Liang,HE Bi,JIANG Xiao‐hua,et al. Modeling thepropagating velocity of reaction waves in Al/Ni multilayer films[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2009,17(2):233-235.
    [9] Morris C J,Mary B,Zakar E,et al. Rapid initiation of reac‐tions in Al/Ni multilayers with nanoscale layering[J]. Journalof Physics&Chemistry of Solids,2010,71(2):84-89.
    [10]王窈,孙秀娟,郭菲,等. Al/Ni爆炸箔电爆特性及驱动飞片能力研究[J].火工品,2016(3):5-8.WANG Yao,SUN Xiu‐juan,GUO Fei,et al. Study on electri‐cal characteristic and flyer driven ability of Al/Ni exploding foil[J]. Initiators&Pyrotechnics,2016(3):5-8.
    [11]邱林俊.含能多层膜的制备及电爆炸性能研究[D].绵阳:西南科技大学,2016.QIU Lin‐jun. Preparation of energetic multilayer film and studyof the electrical explosion performance[D]. Mianyang:South‐west University of Science and Technology,2016.
    [12] Wang T,Zeng Q,Li M. Characterization and application ofAl/Ni reactive multilayers in exploding foils[J]. Central Europe?an Journal of Energetic Materials,2017,14(3):547-558.
    [13] Yang C,Hu Y,Shen R,et al. Fabrication and performancecharacterization of Al/Ni multilayer energetic films[J]. Ad?vanced Materials Research,2014,114(2):459-464.
    [14]王成玲,叶迎华,沈瑞琪,等.图形反转剥离工艺用于复合含能点火桥膜的制备[J].火工品,2012(4):1-5.WANG Cheng‐ling,YE Ying‐hua,SHEN Rui‐qi,et al. Imagereversal lift‐off process for fabrication of energetic multilayer ig‐nition bridge films[J]. Initiators&Pyrotechnics,2012(4):1-5.
    [15]李东乐,朱朋,付帅,等. Al/Ni和Al/Ti纳米多层薄膜制备与表征[J].含能材料,2013,21(6):749-753.LI Dong‐Le,ZHU Peng,FU Shuai,et al. Fabrication and char‐acterization of Al/Ni and Al/Ti multilayer nanofilms[J]. Chi?nese Journal of Energetic Materials(Hanneng Cailiao),2013,21(6):749-753.
    [16]杨贵丽.微型半导体桥换能及发火规律研究[D].北京:北京理工大学,2010.YANG Gui‐li. Study on energy conversion and firing regularityof micro‐semiconductor bridge[D]. Beijing:Beijing Instituteof Technology,2010.
    [17] Mukherjee S,Gall D. Structure zone model for extreme shad‐owing conditions[J]. Thin Solid Films, 2013, 527(1):158-163.
    [18] Ohring M. Materials Science of thin films,2nd ed[M]. San Di‐ego:Academic Press,2001.
    [19] Haynes W M. CRC Handbook of Chemistry and Physics,95thed[M].Boca Raton:CRC Press,2014.
    [20]张仁豫,陈昌渔,王昌长.高电压试验技术[M].北京:清华大学出版社,2009.ZHANG Ren‐yu,CHEN Chang‐yu,WANG Chang‐chang,etal. High voltage test techniques[M]. Beijing:Tsinghua Univer‐sity Press,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700