用户名: 密码: 验证码:
焦化能源流高效集成关键技术研发与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and application of the key technology of efficient integration in coking energy flow
  • 作者:王新东 ; 刘义 ; 黄世平
  • 英文作者:WANG Xindong;LIU Yi;HUANG Shiping;Hesteel Group Co., Ltd.;
  • 关键词:焦化 ; 能源流 ; 高效集成 ; 技术 ; 绿色转型
  • 英文关键词:coking;;energy flow;;high-efficiency integrated;;technology;;green transformation
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:河钢集团有限公司;
  • 出版日期:2018-08-05
  • 出版单位:化工进展
  • 年:2018
  • 期:v.37;No.323
  • 基金:国家重点研发计划项目(2017YFC0210600)
  • 语种:中文;
  • 页:HGJZ201808050
  • 页数:11
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:392-402
摘要
针对焦化能耗高、能效低的产业现状,基于冶金流程工程学理论,研发了一系列焦化余热余能回收关键技术。其中,自主研发的高压高温干熄焦余热回收技术,实现吨焦产540℃、9.81MPa的高品质蒸汽550kg,降低焦炭烧损率0.2%;研发的纳米多层复合结构温度可控的上升管一体化余热回收技术,实现了上升管出口的荒煤气温度由804℃降至552℃,实现吨焦产蒸汽119kg;研发的煤调湿技术降低了配合煤水分4%,降低工序能耗250.8MJ/吨煤;研发的导热油作热载体的能源高效利用技术,实现了脱苯能耗降低30.6%和蒸氨能耗降低21.4%,脱苯效率提高0.15%,过程无废水产生;研发的多塔连续粗苯萃取精制和高效复合萃取剂技术,实现了苯纯度达99.95%,甲苯纯度达99.8%以上,二甲苯流程控制在5℃以内,噻吩纯度达99.0%,还实现了全过程不消耗蒸汽。这些关键共性技术在河钢大型焦炉上的成功实施引领了我国焦化行业向能源利用高效化、资源利用深度化的可持续方向发展。
        Considering the status of high energy consumption and low energy efficiency in coking industry, Hesteel Group developed a series of key technologies of coking waste heat recovery based on the theory of metallurgical process engineering. The high temperature and high pressure CDQ waste heat recovery technology produced the high quality steam 550 kg per ton coke, at 540℃ and 9.81 MPa, and the coke burning loss rate decreased by 0.2%. The development of nano multilayer composite structure and temperature controlled of the raiser integration of the waste heat recovery technology reduced the exiting temperature of the coke-oven raw gas from 804℃ to 552℃ and produced 119 kg stream per ton coke. The development of coal moisture control CMC reduced the moisture content of blended coal by 4%, and also reduced the process energy consumption of 250.8 MJ per ton coal. The development of effective compound extractant and energy efficiency technology using heat conducting oil as a heat carrier reduced energy consumption of benzene removal by 30.6% and energy consumption of ammonia evaporation by 21.4%, and increased benzene removal efficiency by 0.15% which was realized without producing waste water. The developed technology of multi tower continuous refining crude benzol produced the benzene with the purity of 99.95%, the toluene with the purity of 99.8%, and the thiophene with purity of 99.0%. There was no steam consumption in the entire process. The successful implementation of the above key generic technologies on the large coke-ovens in over Hesteel is leading the coking industry in China to utilize resources efficiently and the sustain the growth.
引文
[1]王新东,张宝会,梁英华,等.绿色智能焦化技术在唐钢美锦的应用[J].化工进展,2018,37(1):395-405.WANG Xindong,ZHANG Baohui,LIANG Yinghua,et al.Application of green intelligent coking technology in HBIS Group Tangsteel Meijin Company[J].Chemical Industry and Engineering Progress,2018,37(1):395-405.
    [2]李大尚,李好管.实现煤化工产业科学发展的探讨和建议[J].煤化工,2015,43(1):1-8.LI Dashang,LI Haoguan.Discussion and suggestions on realizing the scientific development of the coal chemical industry[J].Coal Chemical Industry,2015,43(1):1-8.
    [3]王建秀,容和平,李常洪.焦化生态工业园区建设探索[J].山西大学学报(哲学社会科学版),2009,32(1):108-112.WANG Jianxiu,RONG Heping,LI Changhong.An approach to the construction of coking eco-industrial parks[J].Journal of Shanxi University(Philosophy&Social Science),2009,32(1):108-112.
    [4]熊仁聪.重钢焦化厂余热回收利用工艺技术的研究[D].重庆:重庆大学,2017.XIONG Rencong.Researching on residual heat recovery process and technology of coke plant in Chongqing Iron&Steel Co.,Ltd[D].Chongqing:Chongqing University,2017.
    [5]NALETOV V A.Optimal heating system organization in coke ovens[J].Coke&Chemistry,2017,60(2):71-74.
    [6]张欣欣,张安强,冯妍卉,等.焦炉能耗分析与余热利用技术[J].钢铁,2012,47(8):1-4,12.ZHANG Xinxin,ZHANG Anqiang,FENG Yanhui,et al.Energy consumption analysis and technologies of waste heat utilization for coke oven[J].Iron and Steel,2012,47(8):1-4,12.
    [7]LIU Huafei,ZHANG Xinxin,XU Lie,et al.Mathematical model for fluid flow and heat transfer in the cooling shaft of coke dry quenching unit[J].Journal of Thermal Science,2002,11(1):65-73.
    [8]TIWARI H P,SAXENA V K,HALDAR S K,et al.Assessment of thermal efficiency of heat recovery coke making[J].Heat&Mass Transfer,2017,53(8):2517-2529.
    [9]高云祥,杨立新.大型焦炉节能技术探讨[J].昆钢科技,2013(4):56-59.GAO Yunxiang,YANG Lixin.Energy saving technology of largescale coke oven[J].Kungang Keji,2013(4):56-59.
    [10]关少奎,徐海波,王小海,等.长周转时间下的焦炉工艺管理与炉体维护[J].煤化工,2016,44(2):61-63.GUAN Shaokui,XU Haibo,WANG Xiaohai,et al.Process management and furnace body maintenance of coke oven under long turnaround time[J].Coal Chemical Industry,2016,44(2):61-63.
    [11]魏玉东,马强.基于氨水循环煤气净化生产工艺改造技术研究[J].华北科技学院学报,2017,14(2):49-54.WEI Yudong,MA Qiang.Study on reforming process of ammonia circulating gas purification process[J].Journal of North China Institute of Science and Technology,2017,14(2):49-54.
    [12]裴贤丰,张飏,白效言,等.不同煤种模拟炼焦时化产回收的实验研究[J].煤质技术,2011(5):29-31.PEI Xianfeng,ZHANG Yang,BAI Xiaoyan,et al.Experimental study on coking and chemical production recovery of different coal[J].Goal Quality and Technology,2011(5):29-31.
    [13]DANILIN E A,KHRISTENKO B I,KAPLUNOVSKIY A E,et al.Improving the discharge system in CDQ units[J].Coke&Chemistry,2014,57(5):213-218.
    [14]MA Shulong,WEI Yingfeng,WANG Zhifeng,et al.Properties of new mullite-Si C bricks for CDQ shafts[J].China’s Refractories,2017,26(1):47-50.
    [15]郑文华,于振东,文相浩.大型焦炉能量流研究[J].中国冶金,2009,19(11):40-44.ZHENG Wenhua,YU Zhendong,WEN Xianghao.Energy flows investigation of large scale cook oven[J].China Metallurgy,2009,19(11):40-44.
    [16]A green steel economy:the development path of the Chinese iron and steel industry—an examination of the practice of economic transformation of the shougang group[J].Studies on Socialism with Chinese Characteristics,2011,2(s1):80-91.
    [17]郁鸿凌,刘峰,杜艳艳,等.干熄焦余热锅炉一次过热器超温原因分析[J].煤炭燃烧,2010,16(3):61-63.YU Hongling,LIU Feng,DU Yanyan,et al.Over temperature of primary super heater in CDQ waste-heat boiler[J].Coal Combustion,2010,16(3):61-63.
    [18]QIN S,CHANG S.Modeling,thermodynamic and techno-economic analysis of coke production process with waste heat recovery[J].Energy,2017,12(141):435-450.
    [19]丰恒夫,郑文华.焦炉荒煤气显热回收技术的研发及应用[J].河北冶金,2016(6):1-5.FENG Hengfu,ZHENG Wenhua.Development and application of sensible heat recovery technique for coke-oven-gas[J].Hebei Metallurgy,2016(6):1-5.
    [20]冯明杰,王恩刚,刘兵,等.焦炉荒煤气显热回收传热行为的数值模拟[J].中南大学学报(自然科学版),2017,48(2):540-546.FENG Mingjie,WANG Engang,LIU Bing,et al.Numerical simulation of heat transfer behavior in a coke oven crude gas sensible heat tube bundle[J].Journal of Central South University(Science and Technology),2017,48(2):540-546.
    [21]杨哲君,张素军,李菊香.盐浴螺旋盘管式焦炉上升管余热回收装置传热性能试验[J].化工进展,2015,34(9):3238-3243.YANG Zhejun,ZHANG Sujun,LI Juxiang.Experimental research on heat transfer performances of salty bath spiral coil waste heat recovery equipment in coke oven ascending pipe[J].Chemical Industry and Engineering Progress,2015,34(9):3238-3243.
    [22]吕向阳,赵永刚,龙旭佳.焦化厂荒煤气余热回收系统试验研究[J].节能,2017,36(12):63-66.LüXiangyang,ZHAO Yonggang,LONG Xujia.Experimental study on waste heat recovery system of raw gas in coking plant[J].Energy Conservation,2017,36(12):63-66.
    [23]罗国民,周孑民,刘克辉.炼焦煤调湿流化床料层流化特性实验研究[J].中南大学学报(自然科学版),2014,45(8):2864-2870.LUO Guomin,ZHOU Jiemin,LIU Kehui.Study on fluidization for coal moisture control in fluidized bed[J].Journal of Central South University(Science and Technology),2014,45(8):2864-2870.
    [24]武荣成,许光文.焦化过程煤调湿技术发展与应用[J].化工进展,2012,31(s1):149-153.WU Rongcheng,XU Guangwen.Development and application of coal moisture control technology in coking industry[J].Chemical Industry and Engineering Progress,2012,31(s1):149-153.
    [25]CUI P,QU K L,LING Q,et al.Effects of coal moisture control and coal briquette technology on structure and reactivity of cokes[J].Coke&Chemistry,2015,58(5):162-169.
    [26]XU J.Design and implementation of coal moisture control system[J].Industrial Control Computer,2013,6(14):7326-7329.
    [27]DUAN L,CAO Z,YAO G,et al.Visual experimental study on residence time of particle in plate rotary heat exchanger[J].Applied Thermal Engineering,2017,111:213-222.
    [28]汤志刚,温燕明,王登富,等.负压脱苯工艺及其转化度的评价[J].煤化工,2015,43(5):47-50,65.TANG Zhigang,WEN Yanming,WANG Dengfu,et al.Evaluation of negative pressure debenzolization processes and their conversion degrees[J].Coal Chemical Industry,2015,43(5):47-50,65.
    [29]赵海亮,房永会,张格,等.焦化厂负压脱苯工艺探讨[J].燃料与化工,2015,46(6):36-39.ZHAO Hailiang,FANG Yonghui,ZHANG Ge,et al.Discussion on negative pressure debenzolization process in coking plant[J].Fuel&Chemical Process,2015,46(6):36-39.
    [30]赵佳顺,谷毅,董少英,等.负压脱苯工艺的创新优化[J].燃料与化工,2018,49(1):49-50.ZHAO Jiashun,GU Yi,DONG Shaoying,et al.Innovation and optimization of vacuum debenzolization process[J].Fuel&Chemical Process,2018,49(1):49-50.
    [31]武恒平,韦朝海,任源,等.焦化废水预处理及其特征污染物的变化分析[J].化工进展,2017,36(10):3911-3920.WU Hengping,WEI Chaohai,REN Yuan,et al.Analysis of typical pollutants and its removal characteristics in the pretreatment of coking wastewater[J].Chemical Industry and Engineering Progress,2017,36(10):3911-3920.
    [32]张利杰.导热油蒸氨工艺分析与改进[J].燃料与化工,2016,47(4):60-61,63.ZHANG Lijie.Analysis and improvement of ammonia stripping process by heat transfer oil[J].Fuel&Chemical Process,2016,47(4):60-61,63.
    [33]周亮文.管式炉导热油再沸器蒸氨的开发与应用[J].工业加热,2015,5(44):64-65,68.ZHOU Liangwen.Development and application of tube furnace thermal oil reboiler ammonia distilling[J].Industrial Heating,2015,5(44):64-65,68.
    [34]汤志刚,李红伟,温燕明,等.焦化酚氰废水与烟道气治理过程的净化度分析[J].煤化工,2017,45(3):17-20.TANG Zhigang,LI Hongwei,WEN Yanming,et al.Analysis on purification degree in treatment of phenol-cyanogen wastewater and flue gas in the coking process[J].Coal Chemical Industry,2017,45(3):17-20.
    [35]王伟,韩洪军,张静,等.煤制气废水处理技术研究进展[J].化工进展,2013,32(3):681-686.WANG Wei,HAN Hongjun,ZHANG Jing,et al.Progress in treatment technologies of coal gasification wastewater[J].Chemical Industry and Engineering Progress,2013,32(3):681-686.
    [36]方静,轩碧涵,李晓春,等.萃取精馏复合溶剂的复配选择[J].化工学报,2017,11(68):4186-4200.FANG Jing,XUAN Bihan,LI Xiaochun,et al.Combination of mixed solvent in extractive distillation[J].CIESC Journal,2017,11(68):4186-4200.
    [37]韩品谦,林晓辉.焦化粗苯精制方法研究进展[J].山东化工,2016,45(6):27-29.HAN Pinqian,LIN Xiaohui.Research progress on refining process of coking crude benzene[J].Shandong Chemical Industry,2016,45(6):27-29.
    [38]孙安琴.芳烃精制流程的模拟与控制[D].天津:天津大学,2015.SUN Anqin.Simulation and control of aromatic recovery process[D].Tianjin:Tianjin University,2015.
    [39]胡义,王光辉,曾丹林,等.离子液体在回收模拟粗苯中噻吩的研究[J].化学工程,2011,39(8):65-68.HU Yi,WANG Guanghui,ZENG Danlin,et al.Recovery of thiophen in simulative crude benzol by extraction with ionic liquid[J].Chemical Engineering(China),2011,39(8):65-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700