用户名: 密码: 验证码:
热等静压温度和粉末粒度对Ti_2AlNb合金组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Temperature and Powder Particle Size on Mechanical Properties and Microstructure of PM Ti_2AlNb Alloy Prepared via Hot Isostatic Pressing
  • 作者:刘巧沐 ; 吴杰 ; 陈玉龙 ; 陈乾明 ; 裴会平 ; 徐磊
  • 英文作者:LIU Qiaomu;WU Jie;CHEN Yulong;CHEN Qianming;PEI Huiping;XU Lei;AECC Sichuan Gas Turbine Establishment;Institute of Metal Research,Chinese Academy of Sciences;
  • 关键词:金属材料 ; 热等静压工艺 ; 粉末粒度 ; Ti2AlNb合金 ; 力学性能
  • 英文关键词:metallic materials;;hot isostatic pressing;;powder particle size;;Ti2AlNb;;mechanical properties
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:中国航发四川燃气涡轮研究院;中国科学院金属研究所;
  • 出版日期:2019-03-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 语种:中文;
  • 页:CYJB201903001
  • 页数:9
  • CN:03
  • ISSN:21-1328/TG
  • 分类号:3-11
摘要
采用无坩埚感应熔炼超声气体雾化法制备了成分为Ti-22Al-24Nb-0.5Mo(原子分数,%)的预合金粉末,通过预合金粉末热等静压工艺制备了Ti_2AlNb粉末冶金合金。研究结果表明,热等静压温度显著影响Ti2Al Nb粉末冶金合金的显微组织,需严格控制。为了对比研究,选取了平均粒度分别为70μm和200μm的两种Ti_2AlNb预合金粉末,制备坯料并测试性能,探讨了粉末粒度的选取原则,分析了粉末粒度对Ti_2AlNb粉末冶金合金显微组织和力学性能的影响。研究结果表明,粉末粒度对合金室温拉伸强度无显著影响,但会对高温拉伸强度和高温持久寿命产生显著影响,由粗粉(平均粒度200μm)制成的合金高温持久寿命较细粉(平均粒度70μm)的降低大约40%。
        Pre-alloyed powder of Ti-22 Al-24 Nb-0.5 Mo(atomic fraction, %) was prepared via a two step process, i.e. electrode no crucible induction melting and then gas atomization process. Powder metallurgy(PM) Ti2 AlNb alloys was prepared through a typical hot isostatic pressing(HIPing) route. Two prealloyed powders with average particle sizes of 70 and 200 μm respectively were prepared and adopted to prepare PM alloys tested for comparison. The results showed that the powder particle size had no significant effect on the tensile strength at room temperature, but a significant effect on the tensile strength and rupture life time at elevated temperature. It showed that the rupture lifetime of PM Ti_2AlNb alloys made of the coarser powders was about 40% less than that of the finer powders.
引文
[1] Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Materialia, 1988, 36(4):871
    [2] Germann L, Banerjee D, Guédou J Y, et al. Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide[J]. Intermetallics, 2005, 13(9):920
    [3] Banerjee D. The intermetallic Ti2AlNb[J]. Progress in Materials Science, 1997, 42(1-4):135
    [4] Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys[J]. Acta Metallurgica Sinica, 2013, 49(11):1286(沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J].金属学报, 2013, 49(11):1286)
    [5] Wang Y. The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys[D]. Shenyang:Institute of Metal Research, Chinese Academy of Sciences, 2012(王永. Ti2AlNb基合金的合金化、热加工及力学性能研究[D].沈阳:中国科学院金属研究所, 2012)
    [6] Lu Z G, Wu J, Xu L, et al. Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy[J]. Chinese Journal of Materials Research, 2015, 29(6):445(卢正冠,吴杰,徐磊等.粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究[J].材料研究学报, 2015, 29(6):445)
    [7] Wu J, Xu L, Lu B, et al. Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime[J]. Chinese Journal of Materials Research, 2014, 28(5):387(吴杰,徐磊,卢斌等.粉末冶金Ti2AlNb合金的制备及持久寿命[J].材料研究学报, 2014, 28(5):387)
    [8] Wu J, Xu L, Lu Z G, et al. Microstructure design and heat response of powder metallurgy Ti2AlNb alloys[J]. Journal of Materials Science&Technology, 2015, 31(12):1251
    [9] Samarov V, Seliverstov D, Froes FH. In Titanium powder metallurgy[M]. Oxford:Butterworth-Heinemann, 2015
    [10] Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51(2):129(杨锐.钛铝金属间化合物的进展与挑战[J].金属学报, 2015,51(2):129)
    [11] Xu L, Wu J, Cui Y Y, et al. Effect of powder pre-treatment on the mechanical properties of powder metallurgy Ti-47Al-2Cr-2Nb-0.15B[A]. Gamma Titanium Aluminide Alloys 2014:A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology[C]. Hoboken, Wiley, 2014
    [12] Wu J, Xu L, Lu Z G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5Mo alloys[J]. Rare Metal Materials and Engineering, 2017, 46(S1):241(吴杰,徐磊,卢正冠等.热等静压粉末Ti2AlNb合金的制备及电子束焊[J].稀有金属材料与工程, 2017, 46(S1):241)
    [13] Wegmann G, Gerling R, Schimansky F P. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders[J]. Acta Materialia, 2003, 51(3):741
    [14] Eylon D, Schwenker S W, Froes F H. Thermally induced porosity in Ti-6Al-4V prealloyed powder compacts[J]. Metallurgical Transactions A, 1985, 16(8):1526
    [15] Xu L, Guo R P, Bai C G, et al. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. Journal of Materials Science&Technology, 2014, 30(12):1289
    [16] Cheng W X. Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing[D]. Shenyang:Institute of Metal Research, Chinese Academy of Sciences, 2013(程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究[D].沈阳:中国科学院金属研究所, 2013)
    [17] Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. Journal of Materials Science&Technology, 2017, 33(2):172
    [18] Lu Z G, Wu J, Guo R P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics[J].Acta Metallurgica Sinica(English Letters), 2017, 30(7):621
    [19] Boehlert C J, Majumdar B S, Seetharaman V, et al. Part I. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys[J].Metallurgical&Materials Transactions A, 1999, 30(9):2305
    [20] Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metallurgical&Materials Transactions A, 1999, 30(9):2349
    [21] Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys[J]. Metallurgical&Materials Transactions A,2001, 32(8):1977
    [22] Quast J P, Boehlert C J. Comparison of the microstructure, tensile,and creep behavior for Ti-24Al-17Nb-0.66Mo(atomic percent)and Ti-24Al-17Nb-2.3Mo(atomic percent)alloys[J]. Metallurgical&Materials Transactions A, 2007, 38(3):529
    [23] Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. Journal of Phase Equilibria, 1999, 20(2):101
    [24] Chen W, Li J W, Xu L, et al. Development of Ti2AlNb alloys:opportunities and challenges[J]. Advanced Materials&Processes,2014, 172(5):23
    [25] Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy[J]. Scripta Materialia, 2003, 48(5):629
    [26] Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder[J]. Acta Metallurgica Sinica,2018, 54(11):1537
    [27] Guo R P, Xu L, Wu J, et al. Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response[J]. Materials Science&Engineering A, 2015, 639:327
    [28] Guo R P, Xu L, Zong B Y, et al. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Materials&Design, 2016, 99:341
    [29] Guo R P, Xu L, ZongY P, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metallurgica Sinica(English Letters), 2017, 30(8):735
    [30] Cheng W X, Xu L, Lei J F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder[J].The Chinese Journal of Nonferrous Metals, 2013, 23(2):362(程文祥,徐磊,雷家峰等.粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响[J].中国有色金属学报, 2013, 23(2):362)
    [31] Wang S G, Wang S C, Zheng L. Application of high resolution transmission X-ray tomography in material science[J]. Acta Metallurgica Sinica, 2013, 49(8):897(王绍钢,王苏程,张磊.高分辨透射X射线三维成像在材料科学中的应用[J].金属学报, 2013, 49(8):897)
    [32] Jiang H, Zhang K, Garcia-Pastor F A, et al. Microstructure and properties of hot isostatically pressed powder and extruded Ti25-V15Cr2Al0.2C[J]. Materials Science and Technology, 2011, 27(8):1241
    [33] Li W B, Ashby M F, Easterling K E. On densification and shape change during hot isostatic pressing[J]. Acta Metallurgica, 1987,35(12):2831
    [34] Li W B, Easterling K E. Cause and effect of non-uniform densification during hot isostatic pressing[J]. Powder Metallurgy, 1992,35(1):47
    [35] Guo R P, Zhang J, Xu L, et al. Mechanical properties of Ti-5Al-2.5Sn ELI powder compacts[J]. Chinese Journal of Materials Research,2018, 32(5):333(郭瑞鹏,张静,徐磊等. Ti-5Al-2.5Sn ELI粉末合金的力学性能[J].材料研究学报, 2018, 32(5):333)
    [36] Xu L, Guo R P, Liu Y Y. Cost analysis of titanium alloy parts through neat-net-shape hot isostatic pressing[J]. Titanium Industry Progress, 2014, 31(6):1(徐磊,郭瑞鹏,刘羽寅.钛合金粉末热等静压近净成形成本分析[J].钛工业进展, 2014, 31(6):1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700