用户名: 密码: 验证码:
基于磁巴克豪森原理的铁磁材料各向异性检测技术综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applying Magnetic Barkhausen Noise to the Detection of Material Anisotropy:a Technological Review
  • 作者:康学良 ; 董世运 ; 汪宏斌 ; 门平 ; 徐滨士 ; 闫世兴
  • 英文作者:KANG Xueliang;DONG Shiyun;WANG Hongbin;MEN Ping;XU Binshi;YAN Shixing;School of Materials Science and Engineering,Shanghai University;National Key Laboratory for Remanufacturing,Academy of Armored Forces Engineering;
  • 关键词:磁巴克豪森噪声 ; 各向异性 ; 内应力 ; 组织 ; 物理性能 ; 激光增材制造
  • 英文关键词:magnetic Barkhausen noise;;anisotropy;;internal stress;;microstructure;;physical property;;laser additive manufacturing
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:上海大学材料科学与工程学院;陆军装甲兵学院装备再制造技术国防科技重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家重点研发计划重点专项(2016YFB1100205)~~
  • 语种:中文;
  • 页:CLDB201901024
  • 页数:8
  • CN:01
  • ISSN:50-1078/TB
  • 分类号:186-193
摘要
磁巴克豪森噪声是由铁磁材料内部组织结构与磁畴的相互作用产生的一种微观电磁现象,是连接材料微观组织和宏观性能的重要桥梁,通过检测和分析磁巴克豪森噪声信号能够间接反映材料的组织结构状态。基于此原理,磁巴克豪森噪声技术发展成为一种广泛应用的无损检测方法。常规材料大多是各向同性的,意味着沿材料不同取向获得的磁巴克豪森噪声信号理论上是相同的,磁巴克豪森噪声技术可用于检测各向同性材料的硬度、弹性模量、晶粒尺寸、相含量、位错密度和渗碳层深度等。而在实际检测时,磁巴克豪森信号通常是各向异性的,造成这种现象的因素可以分为外部因素(包括外力和外磁场)和内部因素(包括晶胞参数、晶粒取向、残余应力等)。当建立外力和磁巴克豪森噪声信号的关系后,便可以通过磁巴克豪森噪声信号间接检测材料的受力状态,这在实际工程应用中是非常有价值的。通过建立内部因素和磁巴克豪森噪声信号的关系,则能够利用磁巴克豪森噪声技术检测材料的微观组织结构,对于材料的检测和制造工艺技术的反馈都具有重要意义。因此,磁巴克豪森噪声各向异性检测技术,无论是在工程应用领域还是在科研领域都具有重要价值。本文介绍了磁巴克豪森各向异性检测技术的仪器及工作原理、磁巴克豪森噪声的理论基础和分析方法,综述了借助磁巴克豪森噪声各向异性检测技术来研究材料受到的外力、外磁场和材料织构的相关进展;同时探讨了该技术在激光增材制造和激光再制造这两个热点领域中的应用潜力。
        Magnetic Barkhausen noise,a microscopic electromagnetic phenomenon generated by the interaction between ferromagnetic material internal structure and magnetic domain is regarded as an important bridge between the microstructure and macroscopic properties of materials. By detecting and analyzing the magnetic Barkhausen noise signal,the structure of the material can be determined indirectly. Based on this principle,magnetic Barkhausen noise analysis has been developed into a widely applied nondestructive testing method.The conventional material is mostly isotropic,that means the magnetic Barkhausen noise signal shall maintain unvarying along the different orientation of the material. Magnetic Barkhausen noise technique can be used to detect hardness,elastic modulus,grain size,phase content,dislocation density and depth of carburized layer,etc. But we may also obtain anisotropic magnetic Barkhausen signals in practical detection,which can be ascribed to a variety of factors,such as the applied external forces and magnetic field( the external factors),and crystal cell parameters,grain orientation,residual stress,etc.( the internal factors). When the relationship between the external force and the magnetic Barkhausen noise signal is established,the state of the material can be determined through the magnetic Barkhausen noise signal,which is very valuable in practical engineering applications. By establishing the relationship between the internal factors and the magnetic Barkhausen noise signal,researchers can analyzing the magnetic Barkhausen noise signal so as to determine the microstructural state of the material,which is of great significance for the material detection. Therefore,magnetic Barkhausen noise anisotropy detection technology is of great value both in engineering application and in scientific research.This paper introduces the apparatus and corresponding working principles of magnetic Barkhausen anisotropy detection technology,the theoretical basis and analysis method of magnetic Barkhausen noise. It also summarizes the global typical research efforts which apply magnetic Barkhausen noise anisotropy technic to determining external force or external magnetic field which exert on material,and to study material texture.In addition,we provide a critical discussion upon the application potential of this technology in two fields of great focus,i.e. laser additive manufacturing and laser remanufacturing.
引文
[1] Barkhausen H.Physics,1919,z29,401.
    2 Perez-Benitez J A,Capo-Sanchez J,Anglada-Rivera J,et al.NDT&EInternational,2008,41(1),53.
    3 Kpferling M,Fiorillo F,Basso V,et al.Journal of Magnetism&Magnetic Materials,2008,320(20),e527.
    4 Blaow M,Evans J T,Shaw B A.Journal of Materials Science,2007,42(12),4364.
    5 Zhang M L.Journal of the American College of Cardiology,2015,62(11),981.
    6 Seemuang N,Slatter T.International Journal of Advanced Manufacturing Technology,2017,92(1-4),247.
    7 Ghanei S,Kashefi M,Mazinani M.Journal of Magnetism&Magnetic Materials,2014,356(356),103.
    8 Ghanei S,Alam A S,Kashefi M,et al.Materials Science&Engineering A,2014,607(607),253.
    9 Vashita M,Moorthy V.Journal of Magnetism&Magnetic Materials,2015,393,584.
    10 Blaow M,Evans J T,Shaw B A.Acta Materialia,2005,53(2),279.
    11 Sheikh Amiri M,Thielen M,Rabung M,et al.Journal of Magnetism&Magnetic Materials,2014,372(12),16.
    12 Vergne R,Cotillard J C,Porteseil J L.Signal Processing,1982,4(1),73.
    13 Grosse-Nobis W.Journal of Magnetism&Magnetic Materials,1977,4(1-4),247.
    14 Baldwin J A,Pickles G M.Journal of Applied Physics,1972,43(11),4746.
    15 Williams H J,Shockley W,Kittel C.Physical Review,1950,80(6),1090.
    16 Baldwin J A,Culler G J.Journal of Applied Physics,1969,40(7),2828.
    17 Bertotti G,Fiorillo F.Journal of Magnetism&Magnetic Materials,1984,41(1),303.
    18 Alessandro B,Beatrice C,Bertotti G,et al.Journal of Applied Physics,1990,68(6),2908.
    19 Alessandro B,Bertotti G,Fiorillo F.Physica Scripta,1989,39(2),256.
    20 Chikazumi S,Charap S H.Physics of Magnetism,Berlin:Springer,1964.
    21 Martínez-Ortiz P,Pérez-Benitez J A,Espina-Hernández J H,et al.Journal of Magnetism&Magnetic Materials,2015,374,67.
    22 Jagadish C,Clapham L,Atherton D L.IEEE Transactions on Magnetics,1990,26(3),1160.
    23 Langman R.NDT&E International,1991,24(1),48.
    24 Krause T W,Clapham L,Atherton D L.Journal of Applied Physics,1994,75(12),7983.
    25 Gauthier J,Krause T W,Atherton D L.NDT&E International,1998,31(1),23.
    26 Krause T W,Makar J M,Atherton D L.Journal of Magnetism&Magnetic Materials,1994,137(1-2),25.
    27 Pérez-Benitez J A,Padovese L R,Capó-Sánchez J,et al.Journal of Magnetism&Magnetic Materials,2003,263(1-2),72.
    28 Ranjan R,Jiles D C,Rastogi P.IEEE Transactions on Magnetics,1987,23(3),1869.
    29 He Y,Mehdi M,Hilinski E J,et al.Journal of Magnetism&Magnetic Materials,2018,453,149.
    30 Stefanita C G,Atherton D L,Clapham L.Acta Materialia,2000,48(13),3545.
    31 Krause T W,Makar J M,Atherton D L.Journal of Magnetism&Magnetic Materials,1994,137(1-2),25.
    32 Campos M A,Capó-Sánchez J,Benítez J P,et al.NDT&E International,2008,41(8),656.
    33 Krause T W,Pulfer N,Weyman P,et al.IEEE Transactions on Magnetics,1996,32(5),4764.
    34 Clapham L,Krause T W,Olsen H,et al.NDT&E International,1995,28(2),73.
    35 Sagar S P,Kumar B R,Dobmann G,et al.NDT&E International,2005,38(8),674.
    36 Hau2ild P,KolaˇrK K,KarlK M.Materials&Design,2013,44(2),548.
    37 Campos M A,Capó-Sánchez J,Benítez J P,et al.NDT&E International,2008,41(8),656.
    38 Caldas-Morgan M,Padovese L R.NDT&E International,2012,45(1),148.
    39 Capó-snchez J,Pérez-Benitez J,Padovese L R.NDT&E International,2007,40(2),168.
    40 MartíNez-Ortiz P,Pérez-Benítez J A,Espina-Hernández J H,et al.Journal of Magnetism&Magnetic Materials,2016,401,108.
    41 Lo C C H,Jakubovics J P,Scruby C B.Journal of Applied Physics,1997,81(8),4069.
    42 He Y,Mehdi M,Hilinski E J,et al.Journal of Magnetism&Magnetic Materials,2018,453,149.
    43 Espinahernández J H,Pérezbenítez J A,Caleyo F,et al.Journal of Physics d Applied Physics,2013,46(39),392001.
    44 Wei H L,Mazumder J,Debroy T.Scientific Reports,2015,5,16446.
    45 Gusarov A V,Pavlov M,Smurov I.Physics Procedia,2011,12(1),248.
    46 Brandl E,Heckenberger U,Holzinger V,et al.Materials&Design,2012,34,159.
    47 Vilaro T,Colin C,Bartout J D,et al.Materials Science&Engineering A,2012,534(1),446.
    48 Brandt M.Laser Additive manufacturing,Woodhead Publishing,2016.
    49 Dinda G P,Dasgupta A K,Mazumder J.Scripta Materialia,2012,67(5),503.
    50 Geiger F,Kunze K,Etter T.Materials Science&Engineering A,2016,661,240.
    51 Popovich V A,Borisov E V,Popovich A A,et al.Materials&Design,2017,114,441.
    52 Xu B S,Dong S Y,Zhu S,et al.Jounal of Mechanical Engineering,2012,48(15),96(in Chinese).徐滨士,董世运,朱胜,等.机械工程学报,2012,48(15),96.
    53 Xu B S,Dong S Y.Laser Remanufacturing Technology,National Defense Industry Press,2016(in Chinese).徐滨士,董世运.激光再制造,国防工业出版社,2016.
    54 Dong S Y,Yan S X,Xu B S,et al.Chinese Journal of Lasers,2012(12),67(in Chinese).董世运,闫世兴,徐滨士,等.中国激光,2012(12),67.
    55 Dong S Y,Liu B,Xu B S,et al.Failire Analysis and Prevention,2011,6(1),19(in Chinese).董世运,刘彬,徐滨士,等.失效分析与预防,2011,6(1),19.
    56 Wu X J,Zhang Q,Shen G T.Chinese Journal of Scientific Instrument,2016,37(8),1698(in Chinese).武新军,张卿,沈功田.仪器仪表学报,2016,37(8),1698.
    57 Lu C,Wei Y F,Xu W.Chinese Journal of Scientific Instrument,2010,31(10),2272(in Chinese).卢超,魏运飞,徐薇.仪器仪表学报,2010,31(10),2272.
    58 Krause T W,Clapham L,Pattantyus A,et al.Journal of Applied Physics,1996,79(8),4242.
    59 Krause T W,Szpunar J A,Birsan M,et al.Journal of Applied Physics,1996,79(6),3156.
    60 Stefanita C G,Atherton D L,Clapham L.Acta Materialia,2000,48(13),3545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700