用户名: 密码: 验证码:
钛合金双态组织高温拉伸行为的晶体塑性有限元研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy
  • 作者:李学雄 ; 徐东生 ; 杨锐
  • 英文作者:LI Xuexiong;XU Dongsheng;YANG Rui;Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:材料科学基础学科 ; 变形协调性 ; 晶体塑性有限元 ; 钛合金 ; 双态组织 ; 应力应变分配
  • 英文关键词:foundational discipline in materials science;;deformation compatibility;;CPFEM;;titanium alloy;;duplex microstructure;;distributions of micro stress and strain
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:中国科学院金属研究所;中国科学院大学;
  • 出版日期:2019-04-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家重点研发计划(2016YFB0701304);; 中国科学院信息化专项课题(XXH13506-304)~~
  • 语种:中文;
  • 页:CYJB201904001
  • 页数:13
  • CN:04
  • ISSN:21-1328/TG
  • 分类号:3-15
摘要
创建一个包含多变体结构特征的双态组织几何模型,提出一种变形协调性的评估方法,采用以率相关滑移为主的晶体塑性有限元本构关系,研究了具有不同组织特征的Ti-6Al-4V合金双态组织的高温拉伸行为。结果表明:在多晶变形过程中,α_p相承载了更多的应变;在变形后的样品中,出现了大致对称分布于拉伸方向两侧的高应变交叉条带;存在于α_p与β_T之间的包围结构特征,可加剧局域应变分配的差异;随着α_p相体积分数的升高应变量降低,整体应变协调性先较快降低而后平稳;随着α_s片层厚度的增加高应变条带特征弱化,整体应变协调系数升高;含双变体α_s片层团簇结构的β_T组织,其应变协调性低于含单变体和三变体的组织。
        Duplex microstructure models containing multi-variants in eachβtransformed(β_T)grains are established,and then,the high temperature tensile deformation of Ti-6Al-4V alloys with different microstructure features was investigated via the rate-dependent crystal plasticity finite element simulation by taking all slip systems in theαandβphases into consideration.The spatial distributions and time evolution of the stress and strain in various grains and phases are analyzed in detail,and a new method is proposed to evaluate quantitatively the deformation consistency.Simulation results showed thatα_punderwent higher strain distribution rather thanβ_T,and inter-crossing high strain bands formed in the duplex microstructure and distributed symmetrically with respect to the tensile direction.The surrounding structure formed betweenα_pandβ_Tgrains can enhance the differences in the local strain distribution.Increasing the volume fraction ofα_pmay reduce the strain allocation inα_p,the consistency coefficient of strain first decrease rapidly and then stabilized.As the thickness ofα_sincrease,the feature of high strain bands weakened and the consistency coefficient of strain increased.The consistency coefficient of strain forβ_(T )containing doubleα_svariants is usually lower than that with single or threeα_svariants.
引文
[1]Lütjering G, Williams J C. Titanium, 2nd Ed[M]. New York:Springer, 2007
    [2]Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat treatment of Titanium Alloys[M]. Changsha:Central South University Press, 2012(赵永庆,陈永楠,张学敏等.钛合金相变及热处理[M].长沙:中南大学出版社, 2012)
    [3]Ma Y J, Liu J R, Lei J F, et al. The influence of multi heattreatment on microstructure and mechanical properties of TC4alloy[J]. Chinese Journal of Materials Research, 2008, 22(5):555(马英杰,刘建荣,雷家峰等.多重热处理对TC4合金的组织和力学性能的影响[J].材料研究学报, 2008, 22(5):555)
    [4]Wang X Y, Liu J R, Lei J F, et al. Effects of primary and secondaryαphase on tensile property and fracture toughness of Ti-1023 al-loy[J]. Acta Metall. Sin., 2007, 43(11):1129(王晓燕,刘建荣,雷家峰等.初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响[J].金属学报, 2007, 43(11):1129)
    [5]Peng M Q, Chen X W, Zheng C, et al. Effects of secondaryαphase width on dynamic mechanical properties and sensitivity of adiabat-ic shear banding in bimodal microstructures of TC4 alloy[J]. Rare Metal Mat. Eng., 2017, 46(7):1843(彭美旗,程兴旺,郑超等.次生片层α相宽度对双态组织TC4钛合金动态压缩性能及其绝热剪切敏感性的影响[J].稀有金属材料与工程, 2017, 46(7):1843)
    [6]Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstruc-ture and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.1Si[J].The Chinese Journal of Nonferrous Metals, 2010, 20(1):588(宋淼,马英杰,邬军等.冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响[J].中国有色金属学报,2010, 20(1):588)
    [7]Zang X L, Zhao X Q, Joongkeun P, et al. Numerical simulation on distribution of micro stress-strain in dual-phase titanium alloys[J].Rare Metal Mat. Eng., 2009, 38(6):1058(臧新良,赵希庆, Joongkeun P等.双相钛合金微观应力-应变分布的数值模拟[J].稀有金属材料与工程, 2009, 38(6):1058)
    [8]Tang B, Xie S, Liu Y, et al. Crystal plasticity finite element study of incompatible deformation behavior in two phase microstructure in near beta titanium alloy[J]. Rare Metal Mat. Eng., 2015, 44(3):532
    [9]Britton T B, Liang H, Dunne F P E, et al. The effect of crystal ori-entation on the indentation response of commercially pure titani-um:experiments and simulations[J]. Proc. R. Soc. A-Math. Phys.Eng. Sci., 2010, 466(2115):695
    [10]Wilkinson A J, Clarke E E, Britton T B, et al. High resolution elec-tron backscatter diffraction:an emerging tool for studying local de-formation[J]. J. Strain Anal. Eng. Des., 2010, 45(45):365
    [11]Fan X G, Yang H. Internal-state-variable based self-consistent con-stitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution[J]. Int. J. Plast., 2011, 27(11):1833
    [12]Katani S, Madadi F, Atapour M, et al. Micromechanical modelling of damage behaviour of Ti-6Al-4V[J]. Mater. Des., 2013, 49:1016
    [13]Neti S, Vijayshankar M N, Ankem S. Finite element method mod-eling of deformation behavior of two-phase materials part I:stressstrain relations[J]. Mater. Sci. Eng. A-Struct. Mater., 1991, 145(1):47
    [14]Bridier F, McDowell D L, Villechaise P, et al. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading[J]. Int. J. Plast., 2009, 25(6):1066
    [15]Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fa-tigue crack propagating path and crack growth rates in TC4ELI al-loy[J]. Acta Metall. Sin., 2010, 46(9):1086(马英杰,李晋炜,雷家峰等.显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响[J].金属学报, 2010, 46(9):1086)
    [16]Ma Y J, Liu J R, Lei J F, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy[J]. Acta Metall. Sin., 2009, 19(10):1789(马英杰,刘建荣,雷家峰等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响[J].中国有色金属学报, 2009, 19(10):1789)
    [17]Han F B. CPFEM study of nonindentation and high cycle fatigue behavior for Ti-6Al-4V alloy[D]. Xi’an:Northwestern Polytechni-cal University, 2009(韩逢博. Ti-6Al-4V合金纳米压痕变形与高周疲劳行为CPFEM研究[D].西安:西北工业大学, 2016)
    [18]Kuang S, Kang Y L, Yu H, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture[J]. Int. J. Miner. Metall. Mater., 2009, 16(4):393
    [19]Huang B Y, Li C G, Shi L K, et al. China Materials Engineering Canon, Vol.04, Non-Ferrous Metal Materials and Engineering[M].Beijing:Chemical Industries Press, 1994(黄伯云,李成功,石开力等.材料工程大典,第4卷,有色金属材料工程(上)[M].北京:化学工业出版社, 1994)
    [20]Asaro R J, Needleman A. Overview no. 42 texture development and strain-hardening in rate dependent polycrystals[J]. Acta Metal-lurgica, 1985, 33(6):923
    [21]Hill R. Generalized constitutive relations for incremental deforma-tion of metal crystals by multi-slip[J]. J. Mech. Phys. Solids.,1966, 14(2):95
    [22]Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. J. Mech. Phys. Solids., 1972, 20(6):401
    [23]Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single-crystals[J]. Acta Metallur-gica, 1982, 30(6):1087
    [24]Proust G, Tome C N, Kaschner G C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materi-als[J]. Acta Mater., 2007, 55(6):2137
    [25]Tome C, Kaschner G C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials[J]. Materials Science Forum, 2005, 495:1001
    [26]Kalidindi S R. Incorporation of deformation twinning in crystal plasticity models[J]. J. Mech. Phys. Solids., 1998, 46(2):267
    [27]Dunne F P E, Rugg D. On the mechanisms of fatigue facet nucle-ation in titanium alloys[J]. Fatigue Fract. Eng. Mater. Struct.,2008, 31(11):949
    [28]McDowell D L, Dunne F P E. Microstructure-sensitive computa-tional modeling of fatigue crack formation[J]. Int. J. Fatigue.,2010, 32(9):1521
    [29]Jia N, Roters F, Eisenlohr P, et al. Non-crystallographic shear band-ing in crystal plasticity FEM simulations:Example of texture evo-lution in alpha-brass[J]. Acta Mater., 2012, 60(3):1099
    [30]Jia N, Raabe D, Zhao X. Texture and microstructure evolution dur-ing non-crystallographic shear banding in a plane strain com-pressed Cu-Ag metal matrix composite[J]. Acta Mater., 2014,76:238
    [31]Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proc. R. Soc. London Ser. A-Math.Phys. Eng. Sci., 1976, 348(1652):101
    [32]Bassani J L, Wu T Y. Latent hardening in single crystals II analyti-cal characterization and predictions[J]. Proc. R. Soc. A-Math.Phys. Eng. Sci., 1991, 435(1893):21
    [33]Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica,1983, 31(12):1951
    [34]Tamura I, Tomota Y, Yamaoka Y, et al. The Strength and ductility of two-phase iron alloys[J]. Tetsu To Hagane-J. Iron Steel Inst.Jpn., 1973, 59(3):454
    [35]Balasubramanian S, Anand L. Plasticity of initially textured hexag-onal polycrystals at high homologous temperatures:application to titanium[J]. Acta Mater., 2002, 50(1):133
    [36]Simmons G, Wang H. Single Crystal Elastic Constants and Calcu-lated Aggregate Properties[M]. Cambridge:The MIT Press, 1997
    [37]Ogi H, Kai S, Ledbetter H, et al. Titanium's high-temperature elas-tic constants through the hcp-bcc phase transformation[J]. Acta Mater., 2004, 52(7):2075
    [38]Duan Y P, Mesoscopic research and simulation on hot deformation microstructure in TB8 alloy[D]. Hefei:Hefei University of Tech-nology, 2009(段园培. TB8合金热变形组织介观尺度研究与模拟[D].合肥:合肥工业大学, 2009)
    [39]Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm de-formation and annealing[J]. Acta Mater., 2011, 59(10):4138
    [40]Paton N E, Backofen W A. Plastic deformation of Titanium at ele-vated temperatures[J]. Metall. Mater. Trans. B-Proc. Metall. Ma-ter. Proc. Sci., 1970, 1(10):2839
    [41]Guan J, Liu J R, Lei J F, et al. The relationship of heat treat-ment-microstructures-mechanical properties of the TC18 titanium alloy[J]. Chinese Journal of Materials Research, 2009, 23(1):77(官杰,刘建荣,雷家峰等. TC18钛合金的组织和性能与热处理制度的关系[J].材料研究学报, 2009, 23(1):77)
    [42]Yang M, Wang G, Teng C Y, et al. 3D phase field simulation of ef-fect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V[J]. Acta Metall. Sin., 2012, 48(2):148(杨梅,王刚,滕春禹等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J].金属学报, 2012, 48(2):148)
    [43]Zhang J H, Xu D S, Wang Y Z, et al. Influences of dislocations on nucleation and micro-texture formation ofαphase in Ti-6Al-4V al-loy[J]. Acta Metall. Sin., 2016, 52(8):905(张金虎,徐东生,王云志等.位错对Ti-6Al-4V合金α相形核及微织构形成的影响[J].金属学报, 2016, 52(8):905)
    [44]Shi R, Wang Y. Variant selection duringαprecipitation in Ti-6Al-4V under the influence of local stress-A simulation study[J]. Acta Mater., 2013, 61(16):6006
    [45]Burgers W G. On the process of transition of the cubic-body-cen-tered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1(7):561
    [46]Wang S C, Aindow M, Starink M J. Effect of self-accommodation onα/αboundary populations in pure titanium[J]. Acta Mater.,2003, 51(9):2485
    [47]Kehagias T, Komninou P, Dimitrakopulos G P, et al. Slip transfer across low-angle grain boundaries of deformed titanium[J]. Scrip-ta Metal Mater., 1995, 33(12):1883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700